Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Genes (Basel) ; 15(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38397180

ABSTRACT

Hypertriglyceridemia is an exceptionally complex metabolic disorder characterized by elevated plasma triglycerides associated with an increased risk of acute pancreatitis and cardiovascular diseases such as coronary artery disease. Its phenotype expression is widely heterogeneous and heavily influenced by conditions as obesity, alcohol consumption, or metabolic syndromes. Looking into the genetic underpinnings of hypertriglyceridemia, this review focuses on the genetic variants in LPL, APOA5, APOC2, GPIHBP1 and LMF1 triglyceride-regulating genes reportedly associated with abnormal genetic transcription and the translation of proteins participating in triglyceride-rich lipoprotein metabolism. Hypertriglyceridemia resulting from such genetic abnormalities can be categorized as monogenic or polygenic. Monogenic hypertriglyceridemia, also known as familial chylomicronemia syndrome, is caused by homozygous or compound heterozygous pathogenic variants in the five canonical genes. Polygenic hypertriglyceridemia, also known as multifactorial chylomicronemia syndrome in extreme cases of hypertriglyceridemia, is caused by heterozygous pathogenic genetic variants with variable penetrance affecting the canonical genes, and a set of common non-pathogenic genetic variants (polymorphisms, using the former nomenclature) with well-established association with elevated triglyceride levels. We further address recent progress in triglyceride-lowering treatments. Understanding the genetic basis of hypertriglyceridemia opens new translational opportunities in the scope of genetic screening and the development of novel therapies.


Subject(s)
Hypertriglyceridemia , Pancreatitis , Humans , Lipoprotein Lipase/genetics , Acute Disease , Pancreatitis/genetics , Hypertriglyceridemia/genetics , Hypertriglyceridemia/complications , Triglycerides/genetics
2.
Foods ; 12(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37048201

ABSTRACT

Legumes have been sought as alternative protein sources to ensure food security and environmental sustainability. Characterizing their protein content and quality, including in underutilized grain legumes, e.g., grass pea, gives value to the legumes' underexplored variability. To fill the gap of knowledge in legumes' protein quality, for the first time, five extensive collections of cool season grain legumes were cropped under the same environmental conditions and further analyzed. Multivariate analysis showed the existent intra- and inter-species variability. The legume species with the highest protein content, grass pea, Lathyrus sativus (LS), was not the one with the overall highest individual amino acids content and in vitro protein digestibility. With these last characteristics lentil, Lens culinaris (LC), was highlighted. The highest average values of arginine (Arg), glutamic acid (Glu), and threonine (Thr) were found in LS and Vicia faba (VF). Cicer arietinum (CA) stood out as the species with the highest values of Thr and methionine (Met). Regarding the in vitro protein digestibility (IVPD), LC, followed by Pisum sativum (PS) and LS, were the legume species with the highest values. Ultimately, this study bought to the fore legume species that are not commonly used in western diets but have high adaptability to the European agricultural systems.

3.
Neuropsychologia ; 184: 108545, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36934809

ABSTRACT

Effective use of conceptual knowledge engages semantic representation and control processes to access information in a goal-driven manner. Neuropsychological findings of patients presenting either degraded knowledge (e.g., semantic dementia) or disrupted control (e.g., semantic aphasia) converge with neuroimaging evidence from young adults, and delineate the neural segregation of representation and control mechanisms. However, there is still scarce research on the neurofunctional underpinnings of such mechanisms in healthy ageing. To address this, we conducted an fMRI study, wherein young and older adults performed a covert naming task of typical and atypical objects. Three main age-related differences were found. As shown by age group and typicality interactions, older adults exhibited overactivation during naming of atypical (e.g., avocado) relative to typical concepts in brain regions associated to semantic representation, including anterior and medial portions of left temporal lobe (respectively, ATL and MTG). This provides evidence for the reorganization of neural activity in these brain regions contingent to the enrichment of semantic repositories in older ages. The medial orbitofrontal gyrus was also overactivated, indicating that the processing of atypical concepts (relative to typical items) taxes additional control resources in the elderly. Increased activation in the inferior frontal gyrus (IFG) was observed in naming typical items (relative to atypical ones), but only for young adults. This suggests that naming typical items (e.g., strawberry) taxes more on control processes in younger ages, presumably due to the semantic competition set by other items that share multiple features with the target (e.g., raspberry, blackberry, cherry). Together, these results reveal the dynamic nature of semantic control interplaying with conceptual representations as people grow older, by indicating that distinct neural bases uphold semantic performance from young to older ages. These findings may be explained by neural compensation mechanisms coming into play to support neurocognitive changes in healthy ageing.


Subject(s)
Healthy Aging , Semantics , Young Adult , Humans , Aged , Brain Mapping/methods , Cognition/physiology , Brain/diagnostic imaging , Magnetic Resonance Imaging
4.
Plant Genome ; 14(3): e20154, 2021 11.
Article in English | MEDLINE | ID: mdl-34617677

ABSTRACT

Grass pea (Lathyrus sativus L.) is an annual legume species, phylogenetically close to pea (Pisum sativum L.), that may be infected by Fusarium oxysporum f. sp. pisi (Fop), the causal agent of fusarium wilt in peas with vast worldwide yield losses. A range of responses varying from high resistance to susceptibility to this pathogen has been reported in grass pea germplasm. Nevertheless, the genetic basis of that diversity of responses is still unknown, hampering its breeding exploitation. To identify genomic regions controlling grass pea resistance to fusarium wilt, a genome-wide association study approach was applied on a grass pea worldwide collection of accessions inoculated with Fop race 2. Disease responses were scored in this collection that was also subjected to high-throughput based single nucleotide polymorphisms (SNP) screening through genotyping-by-sequencing. A total of 5,651 high-quality SNPs were considered for association mapping analysis, performed using mixed linear models accounting for population structure. Because of the absence of a fully assembled grass pea reference genome, SNP markers' genomic positions were retrieved from the pea's reference genome v1a. In total, 17 genomic regions were associated with three fusarium wilt response traits in grass pea, anticipating an oligogenic control. Seven of these regions were located on pea chromosomes 1, 6, and 7. The candidate genes underlying these regions were putatively involved in secondary and amino acid metabolism, RNA (regulation of transcription), transport, and development. This study revealed important fusarium wilt resistance favorable grass pea SNP alleles, allowing the development of molecular tools for precision disease resistance breeding.


Subject(s)
Fusarium , Genome-Wide Association Study , Pisum sativum/genetics , Plant Breeding , Plant Diseases/genetics
5.
Plants (Basel) ; 10(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34579296

ABSTRACT

Mediterranean annual forage mixtures are facing the impact of climate change, especially higher frequencies of winter-time drought. Increased mixture plasticity to climate variability is needed to mitigate this impact. However, little information exists regarding the specificities and complementarities of each forage species component to potentiate mixture resilience under drought. In this study, we identified traits with breeding potential under water scarcity through a detailed characterization of leaf and root-related parameters of 10 legume and grass species components of Mediterranean annual forage mixtures, complemented by their photosynthetic response evaluation under well-watered and water deficit conditions. This integrated approach also allowed us to identify the most resilient species to water deficit. In particular, we found that the highest canopy height and root to shoot ratio of grass components complemented well the highest aerial and root biomass and superior photosynthetic performance of the legume components. Trifolium squarrosum and Triticosecale showed the most adequate combination of traits and the best photosynthetic performance under water deficit within each species family. Although some of these traits are not commonly used in annual forage selection, they may in part explain the potential higher resilience of the grass-legume mixture under water deficit and should be considered in forage breeding.

6.
Front Plant Sci ; 12: 688214, 2021.
Article in English | MEDLINE | ID: mdl-34249057

ABSTRACT

Olea europaea 'Galega vulgar' variety is a blend of West and Central Mediterranean germplasm with cultivated-wild admixture characteristics. 'Galega vulgar' is known for its high rusticity and superior-quality olive oil, being the main Portuguese variety with high impact for bioeconomy. Nevertheless, it has been replaced by higher-yielding and more adapted to intensive production foreign varieties. To clarify the potential ancestral origin, genetic diversity evolution, and existing genetic relationships within the national heritage of 'Galega vulgar', 595 trees, belonging to ancient and centenary age groups and prospected among ten traditional production regions, were characterized using 14 SSR markers after variety validation by endocarp measurements. Ninety-five distinguishable genets were identified, revealing the presence of a reasonable amount of intra-genetic and morphological variability. A minimum spanning tree, depicting the complete genealogy of all identified genets, represented the 'Galega vulgar' intra-varietal diversity, with 94% of the trees showing only a two-allele difference from the most frequent genet (C001). Strong correlations between the number of differentiating alleles from C001, the clonal size, and their net divergence suggested an ancestral monoclonal origin of the 'Galega vulgar', with the most frequent genet identified as the most likely origin of all the genets and phenotypic diversification occurring through somatic mutations. Genetic erosion was detected through the loss of some allele combinations across time. This work highlights the need to recover the lost diversity in this traditional olive variety by including ancient private genets (associated with potential adaptation traits) in future breeding programs and investing in the protection of these valuable resources in situ by safeguarding the defined region of origin and dispersion of 'Galega vulgar'. Furthermore, this approach proved useful on a highly diverse olive variety and thus applicable to other diverse varieties due either to their intermediate nature between different gene pools or to the presence of a mixture of cultivated and wild traits (as is the case of 'Galega vulgar').

7.
Cogn Process ; 22(3): 539-552, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33928471

ABSTRACT

Successful use of conceptual knowledge entails the assembling of semantic representations and control processes to access the subsets of knowledge relevant in each situation. Research has suggested that representation and control mechanisms interact to support categorization. Notably, depleted representations in semantic dementia and disrupted control processes in semantic aphasia impair categorization of atypical concepts. Yet, it remains unclear how knowledge accumulation and control decay in healthy ageing impact categorization. To address this question, we compared young and older adults' performance in a categorization task of items varying in concept typicality. Critically, older adults were more accurate in categorizing atypical concepts than the younger counterparts, as indicated by the interaction between group and typicality. Moreover, the elderly outperformed the younger in categorizing atypical concepts that were also less familiar. Thus, the decay in semantic control observed along ageing did not significantly hinder the categorization of atypical items. Our data suggest that, relative to young adults, older adults possess enriched conceptual knowledge, which supports retrieval of the category-related features needed for categorizing atypical and less familiar exemplars.


Subject(s)
Aphasia , Healthy Aging , Aged , Aging , Humans , Knowledge , Semantics , Young Adult
8.
Front Nutr ; 8: 683399, 2021.
Article in English | MEDLINE | ID: mdl-35071287

ABSTRACT

Maize (Zea mays L.) is one of the major crops of the world for feed, food, and industrial uses. It was originated in Central America and introduced into Europe and other continents after Columbus trips at the end of the 15th century. Due to the large adaptability of maize, farmers have originated a wide variability of genetic resources with wide diversity of adaptation, characteristics, and uses. Nowadays, in Europe, maize is mainly used for feed, but several food specialties were originated during these five centuries of maize history and became traditional food specialties. This review summarizes the state of the art of traditional foodstuffs made with maize in Southern, South-Western and South-Eastern Europe, from an historic evolution to the last research activities that focus on improving sustainability, quality and safety of food production.

9.
J Agric Food Chem ; 68(29): 7809-7818, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32571020

ABSTRACT

Odor and aroma, resulting from the perception of volatiles by the olfactory receptors, are important in consumer food acceptance. To develop more efficient molecular breeding tools to improve the odor/aroma on maize (Zea mays L.), a staple food crop, increasing the knowledge on the genetic basis of maize volatilome is needed. In this work, we conducted a genome-wide association study on a unique germplasm collection to identify genomic regions controlling maize wholemeal flour's volatilome. We identified 64 regions on the maize genome and candidate genes controlling the levels of 15 volatiles, mainly aldehydes. As an example, the Zm00001d033623 gene was within a region associated with 2-octenal (E) and 2-nonenal (E), two byproducts of linoleic acid oxidation. This gene codes for linoleate 9S-lipoxygenase, an enzyme responsible for oxidizing linoleic acid. This knowledge can now support the development of molecular tools to increase the selection efficacy/efficiency of these volatiles within maize breeding programs.


Subject(s)
Flour/analysis , Genome, Plant , Volatile Organic Compounds/chemistry , Zea mays/genetics , Genome-Wide Association Study , Genomics , Odorants/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Volatile Organic Compounds/metabolism , Zea mays/chemistry , Zea mays/metabolism
10.
J Agric Food Chem ; 68(13): 4051-4061, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32141752

ABSTRACT

The interest in antioxidant compound breeding in maize (Zea mays L.), a major food crop, has increased in recent years. However, breeding of antioxidant compounds in maize can be hampered, given the complex genetic nature of these compounds. In this work, we followed a genome-wide association approach, using a unique germplasm collection (containing Portuguese germplasm), to study the genetic basis of several antioxidants in maize. Sixty-seven genomic regions associated with seven antioxidant compounds and two color-related traits were identified. Several significant associations were located within or near genes involved in the carotenoid (Zm00001d036345) and tocopherol biosynthetic pathways (Zm00001d017746). Some indications of a negative selection against α-tocopherol levels were detected in the Portuguese maize germplasm. The strongest single nucleotide polymorphism (SNP)-trait associations and the SNP alleles with larger effect sizes were pinpointed and set as priority for future validation studies; these associations detected now constitute a benchmark for developing molecular selection tools for antioxidant compound selection in maize.


Subject(s)
Antioxidants/metabolism , Carotenoids/metabolism , Genome, Plant , Zea mays/genetics , Alleles , Antioxidants/analysis , Biosynthetic Pathways , Carotenoids/analysis , Chromosomes, Plant/genetics , Genome-Wide Association Study , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays/chemistry , Zea mays/metabolism
11.
BMC Plant Biol ; 19(1): 123, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30940081

ABSTRACT

BACKGROUND: Maize is a crop in high demand for food purposes and consumers worldwide are increasingly concerned with food quality. However, breeding for improved quality is a complex task and therefore developing tools to select for better quality products is of great importance. Kernel composition, flour pasting behavior, and flour particle size have been previously identified as crucial for maize-based food quality. In this work we carried out a genome-wide association study to identify genomic regions controlling compositional and pasting properties of maize wholemeal flour. RESULTS: A collection of 132 diverse inbred lines, with a considerable representation of the food used Portuguese unique germplasm, was trialed during two seasons, and harvested samples characterized for main compositional traits, flour pasting parameters and mean particle size. The collection was genotyped with the MaizeSNP50 array. SNP-trait associations were tested using a mixed linear model accounting for genetic relatedness. Fifty-seven genomic regions were identified, associated with the 11 different quality-related traits evaluated. Regions controlling multiple traits were detected and potential candidate genes identified. As an example, for two viscosity parameters that reflect the capacity of the starch to absorb water and swell, the strongest common associated region was located near the dull endosperm 1 gene that encodes a starch synthase and is determinant on the starch endosperm structure in maize. CONCLUSIONS: This study allowed for identifying relevant regions on the maize genome affecting maize kernel composition and flour pasting behavior, candidate genes for the majority of the quality-associated genomic regions, or the most promising target regions to develop molecular tools to increase efficacy and efficiency of quality traits selection (such as "breadability") within maize breeding programs.


Subject(s)
Genome-Wide Association Study , Starch/metabolism , Zea mays/genetics , Endosperm/genetics , Endosperm/metabolism , Flour , Genomics , Genotype , Nutritive Value , Phenotype , Plant Breeding , Seeds/genetics , Seeds/metabolism , Zea mays/metabolism
12.
Hortic Res ; 5: 45, 2018.
Article in English | MEDLINE | ID: mdl-30181885

ABSTRACT

The Lathyrus cicera transcriptome was analysed in response to rust (Uromyces pisi) infection to develop novel molecular breeding tools with potential for genetic mapping of resistance in this robust orphan legume species. One RNA-seq library each was generated from control and rust-inoculated leaves from two L. cicera genotypes with contrasting quantitative resistance, de novo assembled into contigs and sequence polymorphisms were identified. In toto, 19,224 SNPs differentiate the susceptible from the partially resistant genotype's transcriptome. In addition, we developed and tested 341 expressed E-SSR markers from the contigs, of which 60.7% varied between the two L. cicera genotypes. A first L. cicera linkage map was created using part of the developed markers in a RIL population from the cross of the two genotypes. This map contains 307 markers, covered 724.2 cM and is organised in 7 major and 2 minor linkage groups, with an average mapping interval of 2.4 cM. The genic markers also enabled us to compare their position in L. cicera map with the physical position of the same markers mapped on Medicago truncatula genome, highlighting a high macrosyntenic conservation between both species. This study provides a large new set of genic polymorphic molecular markers with potential for mapping rust resistances. It represents the first step towards genomics-assisted precision breeding in L. cicera.

13.
Brain Cogn ; 125: 157-164, 2018 08.
Article in English | MEDLINE | ID: mdl-30007170

ABSTRACT

People are often confronted with the need of estimating the market price of goods. An important question is how people estimate prices, given the variability of products and prices available. Using event-related fMRI, we investigated how numerical processing modulates the neural bases of retail price estimation by focusing on two numerical dimensions: the size and precision of the estimates. Participants were presented with several product labels and made market price estimates for those products. Measures of product buying frequency and market price variability were also collected. The estimation of higher prices required longer response times, was associated with greater variation in responses across participants, and correlated with increasing medial and lateral prefrontal cortex (PFC) activity. Moreover, price estimates followed Weber's law, a hallmark feature of numerical processing. Increasing accuracy in price estimation, indexed by decreasing Weber fraction, engaged the intraparietal sulcus (IPS), a critical region in numerical processing. Our findings provide evidence for distinguishable neural mechanisms associated with the size and the precision of price estimates.


Subject(s)
Judgment/physiology , Parietal Lobe/physiology , Reaction Time/physiology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Parietal Lobe/diagnostic imaging , Young Adult
14.
Eur J Clin Microbiol Infect Dis ; 37(6): 1009-1019, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29524060

ABSTRACT

Acinetobacter baumannii is an opportunistic pathogen associated with nosocomial and community infections of great clinical relevance. Its ability to rapidly develop resistance to antimicrobials, especially carbapenems, has re-boosted the prescription and use of polymyxins. However, the emergence of strains resistant to these antimicrobials is becoming a critical issue in several regions of the world because very few of currently available antibiotics are effective in these cases. This review summarizes the most up-to-date knowledge about chromosomally encoded and plasmid-mediated polymyxins resistance in A. baumannii. Different mechanisms are employed by A. baumannii to overcome the antibacterial effects of polymyxins. Modification of the outer membrane through phosphoethanolamine addition, loss of lipopolysaccharide, symmetric rupture, metabolic changes affecting osmoprotective amino acids, and overexpression of efflux pumps are involved in this process. Several genetic elements modulate these mechanisms, but only three of them have been described so far in A. baumannii clinical isolates such as mutations in pmrCAB, lpxACD, and lpsB. Elucidation of genotypic profiles and resistance mechanisms are necessary for control and fight against resistance to polymyxins in A. baumannii, thereby protecting this class for future treatment.


Subject(s)
Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Chromosomes, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Polymyxins/pharmacology , Public Health , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/chemistry , Acinetobacter baumannii/metabolism , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Cross Infection/microbiology , Ethanolaminephosphotransferase/metabolism , Humans , Lipid A/genetics , Lipid A/metabolism , Lipopolysaccharides/metabolism , Mice , Microbial Sensitivity Tests , Plasmids/genetics , Polymyxins/adverse effects , Polymyxins/therapeutic use
15.
Evol Appl ; 11(2): 254-270, 2018 02.
Article in English | MEDLINE | ID: mdl-29387160

ABSTRACT

Modern maize breeding programs gave rise to genetically uniform varieties that can affect maize's capacity to cope with increasing climate unpredictability. Maize populations, genetically more heterogeneous, can evolve and better adapt to a broader range of edaphic-climatic conditions. These populations usually suffer from low yields; it is therefore desirable to improve their agronomic performance while maintaining their valuable diversity levels. With this objective, a long-term participatory breeding/on-farm conservation program was established in Portugal. In this program, maize populations were subject to stratified mass selection. This work aimed to estimate the effect of on-farm stratified mass selection on the agronomic performance, quality, and molecular diversity of two historical maize populations. Multilocation field trials, comparing the initial populations with the derived selection cycles, showed that this selection methodology led to agronomic improvement for one of the populations. The molecular diversity analysis, using microsatellites, revealed that overall genetic diversity in both populations was maintained throughout selection. The comparison of quality parameters between the initial populations and the derived selection cycles was made using kernel from a common-garden experiment. This analysis showed that the majority of the quality traits evaluated progressed erratically over time. In conclusion, this breeding approach, through simple and low-cost methodologies, proved to be an alternative strategy for genetic resources' on-farm conservation.

16.
Front Plant Sci ; 8: 2203, 2017.
Article in English | MEDLINE | ID: mdl-29312428

ABSTRACT

Previous studies have reported promising differences in the quality of kernels from farmers' maize populations collected in a Portuguese region known to produce maize-based bread. However, several limitations have been identified in the previous characterizations of those populations, such as a limited set of quality traits accessed and a missing accurate agronomic performance evaluation. The objectives of this study were to perform a more detailed quality characterization of Portuguese farmers' maize populations; to estimate their agronomic performance in a broader range of environments; and to integrate quality, agronomic, and molecular data in the setting up of decision-making tools for the establishment of a quality-oriented participatory maize breeding program. Sixteen farmers' maize populations, together with 10 other maize populations chosen for comparison purposes, were multiplied in a common-garden experiment for quality evaluation. Flour obtained from each population was used to study kernel composition (protein, fat, fiber), flour's pasting behavior, and bioactive compound levels (carotenoids, tocopherols, phenolic compounds). These maize populations were evaluated for grain yield and ear weight in nine locations across Portugal; the populations' adaptability and stability were evaluated using additive main effects and multiplication interaction (AMMI) model analysis. The phenotypic characterization of each population was complemented with a molecular characterization, in which 30 individuals per population were genotyped with 20 microsatellites. Almost all farmers' populations were clustered into the same quality-group characterized by high levels of protein and fiber, low levels of carotenoids, volatile aldehydes, α- and δ-tocopherols, and breakdown viscosity. Within this quality-group, variability on particular quality traits (color and some bioactive compounds) could still be found. Regarding the agronomic performance, farmers' maize populations had low, but considerably stable, grain yields across the tested environments. As for their genetic diversity, each farmers' population was genetically heterogeneous; nonetheless, all farmers' populations were distinct from each other's. In conclusion, and taking into consideration different quality improvement objectives, the integration of the data generated within this study allowed the outline and exploration of alternative directions for future breeding activities. As a consequence, more informed choices will optimize the use of the resources available and improve the efficiency of participatory breeding activities.

17.
Neuropsychologia ; 89: 309-319, 2016 08.
Article in English | MEDLINE | ID: mdl-27373768

ABSTRACT

The way memory questions are framed influences the information that is searched, retrieved, and monitored during remembering. This fMRI study aimed at clarifying how the format of the retrieval query shapes the neural basis of source recollection. During encoding, participants made semantic (pleasantness) or perceptual (number of letters) judgments about words. Subsequently, in a source memory test, the retrieval query was manipulated such that for half of the items from each encoding task, the retrieval query emphasized the semantic source (i.e., semantic query format: "Is this word from the pleasantness task?"), whereas for the other half the retrieval query emphasized the alternate, perceptual source (i.e., perceptual query format: "Is this word from the letter task?"). The results showed that the semantic query format was associated with higher source recognition than the perceptual query format. This behavioral advantage was accompanied by increased activation in several regions associated to controlled semantic elaboration and monitoring of internally-generated features about the past event. In particular, for items semantically encoded, the semantic query, relative to the perceptual query, induced activation in medial prefrontal cortex (PFC), hippocampal, parahippocampal and middle temporal cortex. Conversely, for items perceptually encoded, the semantic query recruited the lateral PFC and occipital-fusiform areas. Interestingly, the semantic format also influenced the processing of new items, eliciting greater L lateral and medial PFC activation. In contrast, the perceptual query format (versus the semantic format) only prompted greater activation in R orbitofrontal cortex and the R inferior parietal lobe, for items encoded in a perceptual manner and for new items, respectively. The results highlight the role of the retrieval query format in source remembering, showing that the retrieval query that emphasizes the semantic source promotes the use of semantic strategies via medial and L lateral PFC activations. These frontal activations are accompanied by differential recruitment of more posterior regions, depending on the type of information that had been encoded.


Subject(s)
Brain Mapping , Mental Recall/physiology , Perception/physiology , Prefrontal Cortex/physiology , Semantics , Adolescent , Analysis of Variance , Female , Humans , Image Processing, Computer-Assisted , Judgment/physiology , Magnetic Resonance Imaging , Male , Oxygen/blood , Prefrontal Cortex/diagnostic imaging , Reaction Time/physiology , Verbal Learning , Vocabulary , Young Adult
18.
PLoS One ; 10(4): e0124543, 2015.
Article in English | MEDLINE | ID: mdl-25923975

ABSTRACT

MAIZE EAR FASCIATION: Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. MATERIAL AND METHODS: Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. RESULTS AND DISCUSSION: Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. CONCLUSIONS: Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.


Subject(s)
Plant Proteins/genetics , Quantitative Trait Loci/genetics , Zea mays/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Phenotype , Seed Bank , Zea mays/growth & development
19.
J Wildl Dis ; 48(4): 1052-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23060508

ABSTRACT

The maned wolf, Chrysocyon brachyurus, is an endangered Neotropical canid that survives at low population densities. Diseases are a potential threat for its conservation but to date have been poorly studied. We performed clinical evaluations and investigated the presence of infectious diseases through serology and coprologic tests on maned wolves from Galheiro Natural Private Reserve, Perdizes City, Minas Gerais State, southeastern Brazil. Fifteen wolves were captured between 2003 and 2008. We found high prevalences of antibody to canine distemper virus (CDV; 13/14), canine parvovirus (CPV; 4/14), canine adenovirus type 2 (13/14), canine coronavirus (5/11), canine parainfluenza virus (5/5), and Toxoplasma gondii (6/8), along with Ancylostomidae eggs in all feces samples. Antibodies against Leishmania sp. were found in one of 10 maned wolves, and all samples were negative for Neospora caninum. Evidence of high exposure to these viral agents was also observed in unvaccinated domestic dogs from neighboring farms. High prevalence of viral agents and parasites such as CDV, CPV, and Ancylostomidae indicates that this population faces considerable risk of outbreaks and chronic debilitating parasites. This is the first report of exposure to canine parainfluenza virus in Neotropical free-ranging wild canids. Our findings highlight that canine pathogens pose a serious hazard to the viability of maned wolves and other wild carnivore populations in the area and emphasize the need for monitoring and protecting wildlife health in remaining fragments of the Cerrado biome.


Subject(s)
Dog Diseases/epidemiology , Parasitic Diseases, Animal/epidemiology , Sentinel Surveillance/veterinary , Virus Diseases/veterinary , Wolves , Animals , Animals, Domestic , Animals, Wild/parasitology , Animals, Wild/virology , Antibodies, Protozoan/blood , Antibodies, Viral/blood , Brazil/epidemiology , Conservation of Natural Resources , Dog Diseases/transmission , Dogs , Feces/parasitology , Feces/virology , Female , Male , Parasitic Diseases, Animal/transmission , Seroepidemiologic Studies , Virus Diseases/epidemiology , Virus Diseases/transmission , Wolves/parasitology , Wolves/virology
20.
J Bras Pneumol ; 33(1): 43-50, 2007.
Article in English, Portuguese | MEDLINE | ID: mdl-17568867

ABSTRACT

OBJECTIVE: To compare the efficacy, safety, and tolerability of azithromycin and amoxicillin in the treatment of patients with infectious exacerbation of chronic obstructive pulmonary disease. METHODS: This study was conducted at six medical centers across Brazil and included 109 patients from 33 to 82 years of age. Of those, 102 were randomized to receive either azithromycin (500 mg/day for three days, n = 49) or amoxicillin (500 mg every eight hours for ten days, n = 53). The patients were evaluated at the study outset, on day ten, and at one month. Based on the clinical evaluation of the signs and symptoms present on day ten and at one month, the outcomes were classified as cure, improvement, or treatment failure. The microbiological evaluation was made through the culture of sputum samples that were considered appropriate samples only after leukocyte counts and Gram staining. Secondary efficacy evaluations were made in order to analyze symptoms (cough, dyspnea, and expectoration) and pulmonary function. RESULTS: There were no differences between the groups treated with azithromycin or amoxicillin in terms of the percentages of cases in which the outcomes were classified as cure or improvement: 85% vs. 78% (p = 0.368) on day ten; and 83% vs. 78% (p = 0.571) at one month. Similarly, there were no significant differences between the two groups in the secondary efficacy variables or the incidence of adverse effects. CONCLUSION: Azithromycin and amoxicillin present similar efficacy and tolerability in the treatment of acute exacerbation of chronic obstructive pulmonary disease.


Subject(s)
Amoxicillin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Adult , Aged , Aged, 80 and over , Ambulatory Care , Analysis of Variance , Female , Gram-Negative Bacteria/isolation & purification , Gram-Positive Cocci/isolation & purification , Humans , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/microbiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...