Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc Chem Biol ; 10(2): e42, 2018 06.
Article in English | MEDLINE | ID: mdl-29927112

ABSTRACT

The protein kinase C (PKC) family of serine/ threonine kinases has been shown to play active roles as either suppressors or promoters of carcinogenesis in different types of tumors. Using antibodies that preferentially recognize the active conformation of classical PKCs (cPKCs), we have previously shown that in breast cancer samples the expression levels of cPKCs were similar in estrogen receptor-positive (ER+ ) as compared to triple-negative tumors; however, the levels of active cPKCs were different. Determining the activation status of PKCs and other kinases in tumors may thus aid therapeutic decisions. Further, in basic science these tools may be used to understand the spatial and temporal dynamics of PKC signaling under different stimuli and for co-immunoprecipitation studies to detect binding partners and substrates of active cPKCs. In this article, we describe how monoclonal and polyclonal anti-active state PKC antibodies can be obtained using rational approaches to select bona fide epitopes through inspection of the crystal structure of classical PKCs coupled to molecular modeling studies. We believe that this methodology can be used for other kinases and multi-domain enzymes that undergo changes in their conformation upon activation. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Antibodies/chemistry , Antibodies/immunology , Protein Kinase C/chemistry , Protein Kinase C/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Catalytic Domain , Humans , Protein Conformation , Protein Kinase C/metabolism
2.
J Extracell Vesicles ; 4: 28734, 2015.
Article in English | MEDLINE | ID: mdl-26613751

ABSTRACT

Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs) enriched with glycoproteins of the gp85/trans-sialidase (TS) superfamily and other α-galactosyl (α-Gal)-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu) were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase) in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6) and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2) after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain) EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase.

3.
Biochem Biophys Res Commun ; 316(2): 454-60, 2004 Apr 02.
Article in English | MEDLINE | ID: mdl-15020239

ABSTRACT

An ecto-NTP diphosphohydrolase (NTPDase) activity, insensitive to inhibitors of ATPases and phosphatases, was characterized on the surface of live Trypanosoma cruzi intact parasites. The enzyme exhibits broad substrate specificity, typical of NTPDases, and a high hydrolysis rate for GTP. A 2282 bp message encoding a full-length NTPDase was cloned by RT-PCR using epimastigote mRNA. A single protein was immunoprecipitated from [(35)S]methionine-labeled parasites using antibodies against Toxoplasma gondii NTPase I. This antibody localized an NTPDase on the external surface of all forms of T. cruzi, as seen by confocal immuno-fluorescence microscopy. The NTPDase could be part of the parasite's purine salvage pathway. Additionally, trypomastigotes (infective form) presented a 2:1 ATP/ADP hydrolysis ratio, while epimastigotes (non-infective form) presented a 1:1 ratio, suggesting a possible role for the NTPDase in the parasite's virulence mechanisms.


Subject(s)
Pyrophosphatases/analysis , Pyrophosphatases/metabolism , Trypanosoma cruzi/enzymology , Animals , Cloning, Molecular , Microscopy, Fluorescence , Molecular Sequence Data , Precipitin Tests , Pyrophosphatases/genetics , Pyrophosphatases/immunology , Sequence Analysis , Substrate Specificity , Trypanosoma cruzi/cytology , Trypanosoma cruzi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...