Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35335259

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are recalcitrant pollutants which tend to persist in soils and aquatic environments and their remediation is among the most challenging with respect to organic pollutants. Anaerobic digestion (AD) supplemented with low amounts of carbon materials (CM), acting as electron drivers, has proved to be an efficient process for the removal of organic compounds from wastewater. This work explores the impact of PFAS on different trophic groups in anaerobic communities, and the effect of carbon nanotubes (CNT), activated carbon (AC), and oxidized AC (AC-HNO3), as electron shuttles on the anaerobic bioremoval of these compounds, based on CH4 production. The inhibition of the specific methanogenic activity (SMA) exerted by perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), at a concentration of 0.1 mg L-1, was below 10% for acetoclastic and below 15%, for acetogenic communities. Hydrogenotrophic methanogens were not affected by the presence of PFAS. All CM reduced the negative impact of PFAS on the CH4 production rate, but AC was the best. Moreover, the methanization percentage (MP) of sewage sludge (SS) increased 41% in the presence of PFOS (1.2 g L-1) and AC. In addition, AC fostered an increase of 11% in the MP of SS+PFOS, relative to the condition without AC. AC promoted detoxification of PFOA- and PFOS-treated samples by 51% and 35%, respectively, as assessed by Vibrio fischeri assays, demonstrating the advantage of bringing AD and CM together for PFAS remediation.


Subject(s)
Fluorocarbons , Nanotubes, Carbon , Anaerobiosis , Biodegradation, Environmental , Fluorocarbons/analysis , Methane
2.
Microb Biotechnol ; 15(4): 1073-1100, 2022 04.
Article in English | MEDLINE | ID: mdl-34586713

ABSTRACT

Carbon-based materials (CBM), including activated carbon (AC), activated fibres (ACF), biochar (BC), nanotubes (CNT), carbon xenogels (CX) and graphene nanosheets (GNS), possess unique properties such as high surface area, sorption and catalytic characteristics, making them very versatile for many applications in environmental remediation. They are powerful redox mediators (RM) in anaerobic processes, accelerating the rates and extending the level of the reduction of pollutants and, consequently, affecting positively the global efficiency of their partial or total removal. The extraordinary conductive properties of CBM, and the possibility of tailoring their surface to address specific pollutants, make them promising as catalysts in the treatment of effluents containing diverse pollutants. CBM can be combined with magnetic nanoparticles (MNM) assembling catalytic and magnetic properties in a single composite (C@MNM), allowing their recovery and reuse after the treatment process. Furthermore, these composites have demonstrated extraordinary catalytic properties. Evaluation of the toxicological and environmental impact of direct and indirect exposure to nanomaterials is an important issue that must be considered when nanomaterials are applied. Though the chemical composition, size and physical characteristics may contribute to toxicological effects, the potential toxic impact of using CBM is not completely clear and is not always assessed. This review gives an overview of the current research on the application of CBM and C@MNM in bioremediation and on the possible environmental impact and toxicity.


Subject(s)
Environmental Restoration and Remediation , Nanostructures , Anaerobiosis , Biodegradation, Environmental , Catalysis
3.
Ecotoxicology ; 29(7): 866-875, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32728874

ABSTRACT

Pharmaceutical compounds end up in wastewater treatment plants but little is known on their effect towards the different microbial groups in anaerobic communities. In this work, the effect of the antibiotic Ciprofloxacin (CIP), the non-steroidal anti-inflammatory drugs Diclofenac (DCF) and Ibuprofen (IBP), and the hormone 17α-ethinylestradiol (EE2), on the activity of acetogens and methanogens in anaerobic communities, was investigated. Microbial communities were more affected by CIP, followed by EE2, DCF and IBP, but the response of the different microbial groups was dissimilar. For concentrations of 0.01 to 0.1 mg/L, the specific methanogenic activity was not affected. Acetogenic bacteria were sensitive to CIP concentrations above 1 mg/L, while DCF and EE2 toxicity was only detected for concentrations higher than 10 mg/L, and IBP had no effect in all concentrations tested. Acetoclastic methanogens showed higher sensitivity to the presence of these micropollutants, being affect by all the tested pharmaceutical compounds although at different degrees. Hydrogenotrophic methanogens were not affected by any concentration, indicating their lower sensitivity to these compounds when compared to acetoclasts and acetogens.


Subject(s)
Bacteria/metabolism , Water Pollutants, Chemical/adverse effects , Anaerobiosis , Bacteria/drug effects , Ciprofloxacin/adverse effects , Diclofenac/adverse effects , Ethinyl Estradiol/adverse effects , Ibuprofen/adverse effects , Microbiota/drug effects , Wastewater/microbiology
4.
Methods Mol Biol ; 1620: 225-248, 2017.
Article in English | MEDLINE | ID: mdl-28540712

ABSTRACT

Polymerase chain reaction (PCR) is central to methods in molecular ecology. Here, we describe PCR-dependent approaches useful for investigating microbial diversity and its function in various natural, human-associated, and built environment ecosystems. Protocols routinely used for DNA extraction, purification, cloning, and sequencing are included along with various resources for the statistical analysis following gel electrophoresis-based methods (DGGE) and sequencing. We also provide insights into eukaryotic microbiome analysis, sample preservation techniques, PCR troubleshooting, DNA quantification methods, and commonly used ordination techniques.


Subject(s)
Bacteria/genetics , DNA Fingerprinting/methods , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction/methods , Bacteria/classification , Bacteria/isolation & purification , Genetic Variation , Humans , RNA, Ribosomal, 16S/genetics
5.
Bioresour Technol ; 219: 132-138, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27484669

ABSTRACT

Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharolyticus and Thermotoga maritima showed higher hydrogen production yields from xylose (2.7±0.1molmol(-1) total sugar) and cellobiose (4.8±0.3molmol(-1) total sugar) compared to individual cultures. Co-culture of extreme thermophiles C. saccharolyticus and Caldicellulosiruptor bescii increased synergistically the hydrogen production yield from GW (98.3±6.9Lkg(-1) (VS)) compared to individual cultures and co-culture of T. maritima and C. saccharolyticus. The biochemical methane potential of the fermentation end-products was 322±10Lkg(-1) (CODt). Biohythane, a biogas enriched with 15% hydrogen could be obtained from GW, yielding a potential energy generation of 22.2MJkg(-1) (VS).


Subject(s)
Biomass , Extremophiles/metabolism , Fermentation , Gardens , Anaerobiosis , Biofuels , Cellobiose/metabolism , Clostridiales/metabolism , Hot Temperature , Hydrogen/metabolism , Methane/biosynthesis , Thermotoga maritima/metabolism , Waste Products , Xylose/metabolism
6.
Water Res ; 101: 17-24, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27244293

ABSTRACT

Lipids produced by microorganisms are currently of great interest as raw material for either biofuels or oleochemicals production. Significant biosynthesis of neutral lipids, such as triacylglycerol (TAG) and wax esters (WE) are thought to be limited to a few strains. Hydrocarbonoclastic bacteria (HCB), key players in bioremediation of hydrocarbon contaminated ecosystems, are among this group of strains. Hydrocarbon rich wastewaters have been overlooked concerning their potential as raw material for microbial lipids production. In this study, lubricant-based wastewater was fed, as sole carbon source, to two HCB representative wild strains: Alcanivorax borkumensis SK2, and Rhodococcus opacus PD630. Neutral lipid production was observed with both strains cultivated under uncontrolled conditions of pH and dissolved oxygen. A. borkumensis SK2 was further investigated in a pH- and OD-controlled fermenter. Different phases were assessed separately in terms of lipids production and alkanes removal. The maximum TAG production rate occurred during stationary phase (4 mg-TAG/L h). The maximum production rate of WE-like compounds was 15 mg/L h, and was observed during exponential growth phase. Hydrocarbons removal was 97% of the gas chromatography (GC) resolved straight-chain alkanes. The maximum removal rate was observed during exponential growth phase (6 mg-alkanes/L h). This investigation proposes a novel approach for the management of lubricant waste oil, aiming at its conversion into valuable lipids. The feasibility of the concept is demonstrated under low salt (0.3%) and saline (3.3%) conditions, and presents clues for its technological development, since growth associated oil production opens the possibility for establishing continuous fermentation processes.


Subject(s)
Lipids/biosynthesis , Wastewater , Alcanivoraceae , Lubricants , Triglycerides
7.
AMB Express ; 6(1): 35, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27179529

ABSTRACT

Bacterial lipids have relevant applications in the production of renewable fuels and biobased oleochemicals. The genus Rhodococcus is one of the most relevant lipid producers due to its capability to accumulate those compounds, mainly triacylglycerols (TAG), when cultivated on different defined substrates, namely sugars, organic acids and hydrocarbons but also on complex carbon sources present in industrial wastes. In this work, the production of storage lipids by Rhodococcus opacus B4 using glucose, acetate and hexadecane is reported for the first time and its productivity compared with Rhodococcus opacus PD630, the best TAG producer bacterium reported. Both strains accumulated mainly TAG from all carbon sources, being influenced by the carbon source itself and by the duration of the accumulation period. R. opacus B4 produced 0.09 and 0.14 g L(-1) at 24 and 72 h, with hexadecane as carbon source, which was 2 and 3.3 fold higher than the volumetric production obtained by R. opacus PD630. Both strains presented similar fatty acids (FA) profiles in intact cells while in TAG produced fraction, R. opacus B4 revealed a higher variability in fatty acid composition than R. opacus PD630, when both strains were cultivated on hexadecane. The obtained results open new perspectives for the use of R. opacus B4 to produce TAG, in particular using oily (alkane-contaminated) waste and wastewater as cheap raw-materials. Combining TAG production with hydrocarbons degradation is a promising strategy to achieve environmental remediation while producing added value compounds.

8.
Photochem Photobiol ; 89(1): 33-9, 2013.
Article in English | MEDLINE | ID: mdl-22817135

ABSTRACT

UV/titanium dioxide (TiO(2)) degradation of two xanthene dyes, erythrosine B (Ery) and eosin Y (Eos), was studied in a photocatalytic reactor. Photocatalysis was able to degrade 98% of Ery and 73% of Eos and led to 65% of chemical oxygen demand removal. Experiments in buffered solutions at different initial pH values reveal the pH dependence of the process, with better results obtained under acidic conditions due to the electrostatic attraction caused by the opposite charges of TiO(2) (positive) and of anionic dyes (negative). Batch activity tests under methanogenic conditions showed the high toxicity exerted by the dyes even at low concentrations (~85% with initial concentration of 0.3 mmol L(-1)), but the end products of photocatalytic treatment were much less toxic toward methanogenic bacteria, as detoxification of 85 ± 5% for Eos and 64 ± 7% for Ery were obtained. In contrast, the dyes had no inhibitory effect on the biogenic-carbon biodegradation activity of aerobic biomass, obtained by respirometry. The results demonstrate that photocatalysis combining UV/TiO(2) as a pretreatment followed by an anaerobic biological process may be promising for the treatment of wastewaters produced by many industries.


Subject(s)
Coloring Agents/chemistry , Eosine Yellowish-(YS)/chemistry , Erythrosine/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Anaerobiosis , Biological Oxygen Demand Analysis , Hydrogen-Ion Concentration , Photochemical Processes , Static Electricity , Ultraviolet Rays
9.
Biodegradation ; 23(5): 725-37, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22437968

ABSTRACT

Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes--Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L⁻¹, while the process rates were independent of the biomass concentration above 1.89 g VSS L⁻¹. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L⁻¹ AC0). Using different modified AC samples (from the treatment of AC0), a threefold higher rate was obtained with the most basic one, AC(H2), as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na2S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.


Subject(s)
Biomass , Coloring Agents/metabolism , Sewage/microbiology , Xanthenes/metabolism , Adsorption , Anaerobiosis , Azo Compounds/chemistry , Azo Compounds/metabolism , Batch Cell Culture Techniques , Biodegradation, Environmental , Charcoal/chemistry , Color , Coloring Agents/chemistry , Electrons , Eosine Yellowish-(YS)/isolation & purification , Erythrosine/isolation & purification , Hydrogen-Ion Concentration , Oxidation-Reduction , Solutions , Spectrophotometry, Ultraviolet , Substrate Specificity , Xanthenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...