Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 10(2): 467-474, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38189234

ABSTRACT

Cutaneous leishmaniasis (CL) is a polymorphic and spectral skin disease caused by Leishmania spp. protozoan parasites. CL is difficult to diagnose because conventional methods are time-consuming, expensive, and low-sensitive. Fourier transform infrared spectroscopy (FTIR) with machine learning (ML) algorithms has been explored as an alternative to achieve fast and accurate results for many disease diagnoses. Besides the high accuracy demonstrated in numerous studies, the spectral variations between infected and noninfected groups are too subtle to be noticed. Since variability in sample set characteristics (such as sex, age, and diet) often leads to significant data variance and limits the comprehensive understanding of spectral characteristics and immune responses, we investigate a novel methodology for diagnosing CL in an animal model study. Blood serum, skin lesions, and draining popliteal lymph node samples were collected from Leishmania (Leishmania) amazonensis-infected BALB/C mice under experimental conditions. The FTIR method and ML algorithms accurately differentiated between infected (CL group) and noninfected (control group) samples. The best overall accuracy (∼72%) was obtained in an external validation test using principal component analysis and support vector machine algorithms in the 1800-700 cm-1 range for blood serum samples. The accuracy achieved in analyzing skin lesions and popliteal lymph node samples was satisfactory; however, notable disparities emerged in the validation tests compared to results obtained from blood samples. This discrepancy is likely attributed to the elevated sample variability resulting from molecular compositional differences. According to the findings, the successful functioning of prediction models is mainly related to data analysis rather than the differences in the molecular composition of the samples.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Animals , Mice , Spectroscopy, Fourier Transform Infrared , Mice, Inbred BALB C , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Models, Animal , Machine Learning
2.
J Biophotonics ; 14(4): e202000412, 2021 04.
Article in English | MEDLINE | ID: mdl-33389822

ABSTRACT

Lutzomyia longipalpis and Lutzomyia cruzi are the main sandflies species involved in the transmission of Leishmania infantum protozoan in Brazil. The morphological characteristics can be used for species identification of males specimens, while females are indistinguishable. Although, sandflies identification is essential to understand vectorial capacity, and susceptibility to infectious agents or insecticides, there is a lack of new strategies for specimen identification. In this study, Fourier transform infrared photoacoustic spectroscopy combined with multivariate analysis identified intraspecific differences between Lutzomyia populations. Successfully group clustering was achieved by principal component analysis. The main differences observed can be related to the protein content of the specimens. A classification with 100% accuracy was obtained using machine learning approach, allowing the identification of sandflies specimens.


Subject(s)
Psychodidae , Animals , Brazil , Female , Insect Vectors , Male , Multivariate Analysis , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...