Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 76(6): 1423-30, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17653542

ABSTRACT

Cells of Rhodococcus erythropolis DCL14 were adapted to increasing toluene concentrations in a mechanically stirred reactor. When the initial non-adapted cells were placed in contact with toluene, only 10.5% of cells remained viable after 1 h in the presence of 20% (v/v) toluene, while 8.6% of cells were viable after 28 h in the presence of an organic phase containing 80% (v/v) toluene in n-dodecane. Cell adaptation was studied by following the toluene consumption rate, the viability of the cell population, and the composition of the bacteria cellular membrane in the presence of increasing concentrations of toluene in the reactor. A maximum toluene concentration of 4.9 M, which corresponds to 52.4% (v/v) toluene in the organic phase, was achieved, toluene being consumed at 10.7 mg/(h mg protein). The adapted cells showed a substantially increased resistance to 50% ethanol and to concentrations of Betadine and Micropur tablets currently used in water purification, when compared to non-adapted cells.


Subject(s)
Adaptation, Physiological/drug effects , Rhodococcus/drug effects , Rhodococcus/physiology , Toluene/pharmacology , Anti-Bacterial Agents/pharmacology , Biodegradation, Environmental , Drug Resistance, Bacterial , Environmental Pollutants , Rhodococcus/cytology
2.
J Ind Microbiol Biotechnol ; 33(6): 408-16, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16501933

ABSTRACT

The potential use of n-dodecane as an oxygen vector for enhancement of Crypthecodinium cohnii growth and docosahexaenoic acid (DHA) production was studied. The volumetric fraction of oxygen vector influenced the gas-liquid volumetric mass transfer coefficient k (L) a positively. The k (L) a increased almost linearly with the increase of volumetric fraction of n-dodecane up to 1%. The stirring rate showed a higher influence on the k (L) a than the aeration rate. The effects of this hydrocarbon on C. cohnii growth and DHA production were then investigated. A control batch fermentation without n-dodecane addition (CF) and a batch fermentation where n-dodecane 1% (v/v) was added (DF) were carried out simultaneously under the same experimental conditions. It was found that, before 86.7 h of fermentation, the biomass concentration, the specific growth rate, the DHA, and total fatty acids (TFA) production were higher in the CF. After this fermentation time, the biomass concentration, the DHA and TFA production were higher in the DF. The highest DHA content of biomass (6.14%), DHA percentage of TFA (51%), and DHA production volumetric rate r (DHA) (9.75 mg l(-1 )h(-1)) were obtained at the end of the fermentation with n-dodecane (135.2 h). The dissolved oxygen tension (DOT) was always higher in the DF, indicating a better oxygen transfer due to the oxygen vector presence. However, since the other C. cohnii unsaturated fatty acids percentages did not increase with the oxygen availability increase due to the n-dodecane presence, a desaturase oxygen-dependent mechanism involved in the C. cohnii DHA biosynthesis was not considered to explain the DHA production increase. A selective extraction through the n-dodecane was suggested.


Subject(s)
Alkanes/metabolism , Dinoflagellida/metabolism , Docosahexaenoic Acids/metabolism , Animals , Biomass , Culture Media/chemistry , Dinoflagellida/growth & development , Fatty Acids/biosynthesis , Fermentation , Oxidation-Reduction , Oxygen/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...