Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 15: 153, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24564817

ABSTRACT

BACKGROUND: Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars. RESULTS: Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al(3+) specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1. CONCLUSIONS: High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.


Subject(s)
Adaptation, Biological/genetics , Aluminum/toxicity , Genome, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays/drug effects , Zea mays/genetics , Breeding , Chromosome Mapping , Gene Dosage , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Genotype , Phenotype , Phylogeny , Plant Roots/drug effects , Plant Roots/genetics
2.
Plant J ; 73(2): 276-88, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22989115

ABSTRACT

Impaired root development caused by aluminum (Al) toxicity is a major cause of grain yield reduction in crops cultivated on acid soils, which are widespread worldwide. In sorghum, the major Al-tolerance locus, AltSB , is due to the function of SbMATE, which is an Al-activated root citrate transporter. Here we performed a molecular and physiological characterization of various AltSB donors and near-isogenic lines harboring various AltSB alleles. We observed a partial transfer of Al tolerance from the parents to the near-isogenic lines that was consistent across donor alleles, emphasizing the occurrence of strong genetic background effects related to AltSB . This reduction in tolerance was variable, with a 20% reduction being observed when highly Al-tolerant lines were the AltSB donors, and a reduction as great as 70% when other AltSB alleles were introgressed. This reduction in Al tolerance was closely correlated with a reduction in SbMATE expression in near-isogenic lines, suggesting incomplete transfer of loci acting in trans on SbMATE. Nevertheless, AltSB alleles from the highly Al-tolerant sources SC283 and SC566 were found to retain high SbMATE expression, presumably via elements present within or near the AltSB locus, resulting in significant transfer of the Al-tolerance phenotype to the derived near-isogenic lines. Allelic effects could not be explained by coding region polymorphisms, although occasional mutations may affect Al tolerance. Finally, we report on the extensive occurrence of alternative splicing for SbMATE, which may be an important component regulating SbMATE expression in sorghum by means of the nonsense-mediated RNA decay pathway.


Subject(s)
Aluminum/toxicity , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Sorghum/drug effects , Sorghum/metabolism , Alternative Splicing , Base Sequence , Genetic Variation , Genome, Plant , Models, Molecular , Molecular Sequence Data , Plant Proteins/genetics , Protein Conformation , Sorghum/genetics
3.
Nat Genet ; 39(9): 1156-61, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17721535

ABSTRACT

Crop yields are significantly reduced by aluminum toxicity on highly acidic soils, which comprise up to 50% of the world's arable land. Candidate aluminum tolerance proteins include organic acid efflux transporters, with the organic acids forming non-toxic complexes with rhizosphere aluminum. In this study, we used positional cloning to identify the gene encoding a member of the multidrug and toxic compound extrusion (MATE) family, an aluminum-activated citrate transporter, as responsible for the major sorghum (Sorghum bicolor) aluminum tolerance locus, Alt(SB). Polymorphisms in regulatory regions of Alt(SB) are likely to contribute to large allelic effects, acting to increase Alt(SB) expression in the root apex of tolerant genotypes. Furthermore, aluminum-inducible Alt(SB) expression is associated with induction of aluminum tolerance via enhanced root citrate exudation. These findings will allow us to identify superior Alt(SB) haplotypes that can be incorporated via molecular breeding and biotechnology into acid soil breeding programs, thus helping to increase crop yields in developing countries where acidic soils predominate.


Subject(s)
Adaptation, Physiological/drug effects , Aluminum/toxicity , Membrane Transport Proteins/genetics , Plant Proteins/genetics , Sorghum/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Membrane/metabolism , Drug Resistance, Multiple/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Membrane Transport Proteins/biosynthesis , Membrane Transport Proteins/metabolism , Microscopy, Confocal , Molecular Sequence Data , Mutation , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Sorghum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...