Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Med Phys ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980220

ABSTRACT

An Addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water is presented for electron beams with energies between 4 MeV and 22 MeV ( 1.70 cm ≤ R 50 ≤ 8.70 cm $1.70\nobreakspace {\rm cm} \le R_{\text{50}} \le 8.70\nobreakspace {\rm cm}$ ). This updated formalism allows simplified calibration procedures, including the use of calibrated cylindrical ionization chambers in all electron beams without the use of a gradient correction. New k Q $k_{Q}$ data are provided for electron beams based on Monte Carlo simulations. Implementation guidance is provided. Components of the uncertainty budget in determining absorbed dose to water at the reference depth are discussed. Specifications for a reference-class chamber in electron beams include chamber stability, settling, ion recombination behavior, and polarity dependence. Progress in electron beam reference dosimetry is reviewed. Although this report introduces some major changes (e.g., gradient corrections are implicitly included in the electron beam quality conversion factors), they serve to simplify the calibration procedure. Results for absorbed dose per linac monitor unit are expected to be up to approximately 2 % higher using this Addendum compared to using the original TG-51 protocol.

2.
ArXiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38259341

ABSTRACT

PURPOSE: This study aims to quantify the variation in dose-volume histogram (DVH) and normal tissue complication probability(NTCP) metrics for head-and-neck (HN) cancer patients when alternative organ-at-risk(OAR) delineations are used for treatment planning and for treatment plan evaluation. We particularly focus on the effects of daily patient positioning/setup variations(SV) in relation to treatment technique and delineation variability. MATERIALS AND METHODS: We generated two-arc VMAT, 5-beam IMRT, and 9-beam IMRT treatment plans for a cohort of 209 HN patients. These plans incorporated five different OAR delineation sets, including manual and four automated algorithms. Each treatment plan was assessed under various simulated per-fraction patient setup uncertainties, evaluating the potential clinical impacts through DVH and NTCP metrics. RESULTS: The study demonstrates that increasing SV generally reduces differences in DVH metrics between alternative delineations. However, in contrast, differences in NTCP metrics tend to increase with higher setup variability. This pattern is observed consistently across different treatment plans and delineator combinations, illustrating the intricate relationship between SV and delineation accuracy. Additionally, the need for delineation accuracy in treatment planning is shown to be case-specific and dependent on factors beyond geometric variations. CONCLUSIONS: The findings highlight the necessity for comprehensive Quality Assurance programs in radiotherapy, incorporating both dosimetric impact analysis and geometric variation assessment to ensure optimal delineation quality. The study emphasizes the complex dynamics of treatment planning in radiotherapy, advocating for personalized, case-specific strategies in clinical practice to enhance patient care quality and efficacy in the face of varying SV and delineation accuracies.

3.
Med Phys ; 48(2): 569-578, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33314247

ABSTRACT

PURPOSE: To quantify the error detection power of a new treatment delivery error detection method. The method validates monitor unit (MU) resolved beam apertures using real-time EPID images. METHODS: The on-board EPID imager was used to measure cine-EPID (~10 Hz) images for 27 beams from 15 VMAT/SBRT clinical treatment plans and five nonclinical plans. For each frame acquisition, planned apertures were interpolated from the treatment plan multileaf collimator (MLC) positions expected during the frame acquisition interval. Inaccurate deliveries were identified by monitoring in-aperture missed fluence and out-of-aperture excess fluence beyond a specified buffer. Delivery errors were simulated by perturbing the planned MLC positions before comparison with nonperturbed measured apertures. Systematic 1-5 mm MLC leaf shifts were used to train a logistic regression model to determine the error detection threshold. Model accuracy was monitored using tenfold cross-validation. The model's error detection ability was tested with other error modes: plan control point (CP) weight perturbations, collimator rotations, random MLC leaf position errors, EPID imager shift, and stuck MLC leaf. The error detection accuracy was evaluated using the Matthews correlation coefficient (MCC) and the false positive rate (FPR). Per-beam error thresholds of >1, >5, and >10% errant frames were tested to label per-beam errors. The model also was tested for its ability to distinguish five cases with highly similar plans and compared with gamma analysis. RESULTS: Delivery errors were detected by monitoring intended per-frame images with a 2 mm MLC buffer. Frame-by-frame aperture errors were identified with an optimal threshold of 0.3% of the expected aperture area. The per-frame FPR was 0.02%. The MCC was 1.00 (perfect classification) for detection based on 1% of frames for random CP weight shift, 3 mm random MLC shifts, 90° and 180° collimator rotations, and an MLC leaf stuck after 10% of the beam delivery. The MCC for 2°, 4°, and 8° collimator rotation were 0.53, 0.76, and 0.96, respectively, for the 1% of beam delivery threshold. The 3 mm EPID shift had poor detection, with a minimum MCC of 0.14. The highly similar plans were reliably detected by the aperture check but were not detectable with gamma analysis. CONCLUSION: The high error detection sensitivity and low FPR makes the aperture check error detection method well suited to pretreatment and during-treatment beam delivery quality assurance (QA). The aperture check detects subtle beam delivery errors, including those resulting from MLC leaf positioning deviations, CP MU shifts, and stuck MLC leaves. Furthermore, the method can distinguish between highly similar treatment plans. Since the aperture check method monitors for the aperture shapes over a given MU interval, it is also sensitive to errors in MU per CP, without requiring dosimetric calibration of the EPID. The aperture check is one part of a Swiss cheese error detection scheme, which provides redundant error testing of multiple error modes, including nonaperture related errors. The rapid error detection, at 1% of a beam's delivery, make the aperture check a potential candidate for QA of on-line adaptive radiotherapy, or other situations in which pretreatment delivery QA is impractical.


Subject(s)
Radiotherapy, Intensity-Modulated , Gamma Rays , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
4.
Adv Radiat Oncol ; 5(6): 1324-1333, 2020.
Article in English | MEDLINE | ID: mdl-33305095

ABSTRACT

PURPOSE: Manual delineation (MD) of organs at risk (OAR) is time and labor intensive. Auto-delineation (AD) can reduce the need for MD, but because current algorithms are imperfect, manual review and modification is still typically used. Recognizing that many OARs are sufficiently far from important dose levels that they do not pose a realistic risk, we hypothesize that some OARs can be excluded from MD and manual review with no clinical effect. The purpose of this study was to develop a method that automatically identifies these OARs and enables more efficient workflows that incorporate AD without degrading clinical quality. METHODS AND MATERIALS: Preliminary dose map estimates were generated for n = 10 patients with head and neck cancers using only prescription and target-volume information. Conservative estimates of clinical OAR objectives were computed using AD structures with spatial expansion buffers to account for potential delineation uncertainties. OARs with estimated dose metrics below clinical tolerances were deemed low priority and excluded from MD and/or manual review. Final plans were then optimized using high-priority MD OARs and low-priority AD OARs and compared with reference plans generated using all MD OARs. Multiple different spatial buffers were used to accommodate different potential delineation uncertainties. RESULTS: Sixty-seven out of 201 total OARs were identified as low-priority using the proposed methodology, which permitted a 33% reduction in structures requiring manual delineation/review. Plans optimized using low-priority AD OARs without review or modification met all planning objectives that were met when all MD OARs were used, indicating clinical equivalence. CONCLUSIONS: Prioritizing OARs using estimated dose distributions allowed a substantial reduction in required MD and review without affecting clinically relevant dosimetry.

5.
Acta Oncol ; 58(12): 1731-1739, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31423867

ABSTRACT

Introduction: Within an International Atomic Energy Agency (IAEA) co-ordinated research project (CRP), a remote end-to-end dosimetric quality audit for intensity modulated radiation therapy (IMRT)/ volumetric arc therapy (VMAT) was developed to verify the radiotherapy chain including imaging, treatment planning and dose delivery. The methodology as well as the results obtained in a multicentre pilot study and national trial runs conducted in close cooperation with dosimetry audit networks (DANs) of IAEA Member States are presented.Material and methods: A solid polystyrene phantom containing a dosimetry insert with an irregular solid water planning target volume (PTV) and organ at risk (OAR) was designed for this audit. The insert can be preloaded with radiochromic film and four thermoluminescent dosimeters (TLDs). For the audit, radiotherapy centres were asked to scan the phantom, contour the structures, create an IMRT/VMAT treatment plan and irradiate the phantom. The dose prescription was to deliver 4 Gy to the PTV in two fractions and to limit the OAR dose to a maximum of 2.8 Gy. The TLD measured doses and film measured dose distributions were compared with the TPS calculations.Results: Sixteen hospitals from 13 countries and 64 hospitals from 6 countries participated in the multicenter pilot study and in the national runs, respectively. The TLD results for the PTV were all within ±5% acceptance limit for the multicentre pilot study, whereas for national runs, 17 participants failed to meet this criterion. All measured doses in the OAR were below the treatment planning constraint. The film analysis identified seven plans in national runs below the 90% passing rate gamma criteria.Conclusion: The results proved that the methodology of the IMRT/VMAT dosimetric end-to-end audit was feasible for its intended purpose, i.e., the phantom design and materials were suitable; the phantom was easy to use and it was robust enough for shipment. Most importantly the audit methodology was capable of identifying suboptimal IMRT/VMAT delivery.


Subject(s)
Medical Audit/methods , Organs at Risk , Phantoms, Imaging , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Feasibility Studies , Humans , International Agencies , Medical Audit/standards , Nuclear Energy , Pilot Projects , Quality Assurance, Health Care , Radiometry/standards , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/standards , Tomography, X-Ray Computed
6.
Phys Imaging Radiat Oncol ; 5: 58-63, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33458370

ABSTRACT

BACKGROUND AND PURPOSE: An audit methodology for verifying the implementation of output factors (OFs) of small fields in treatment planning systems (TPSs) used in radiotherapy was developed and tested through a multinational research group and performed on a national level in five different countries. MATERIALS AND METHODS: Centres participating in this study were asked to provide OFs calculated by their TPSs for 10 × 10 cm2, 6 × 6 cm2, 4 × 4 cm2, 3 × 3 cm2 and 2 × 2 cm2 field sizes using an SSD of 100 cm. The ratio of these calculated OFs to reference OFs was analysed. The action limit was ±3% for the 2 × 2 cm2 field and ±2% for all other fields. RESULTS: OFs for more than 200 different beams were collected in total. On average, the OFs for small fields calculated by TPSs were generally larger than measured reference data. These deviations increased with decreasing field size. On a national level, 30% and 31% of the calculated OFs of the 2 × 2 cm2 field exceeded the action limit of 3% for nominal beam energies of 6 MV and for nominal beam energies higher than 6 MV, respectively. CONCLUSION: Modern TPS beam models generally overestimate the OFs for small fields. The verification of calculated small field OFs is a vital step and should be included when commissioning a TPS. The methodology outlined in this study can be used to identify potential discrepancies in clinical beam models.

7.
PLoS One ; 5(5): e10466, 2010 May 03.
Article in English | MEDLINE | ID: mdl-20454675

ABSTRACT

In the radiotherapy treatment planning of a lesion located in the head region with small field radiation beams, the heterogeneity corrections play an important role. In this work, we investigated the influence of a bony heterogeneity on dose profile inside a soft tissue phantom containing a bony material. PDD curves were obtained by simulation using the Monte Carlo code EGSnrc and employing Eclipse(R) treatment planning system algorithms (Batho, Modified Batho, Equivalent TAR and Anisotropic Analytic Algorithm) for a 15 MV photon beam and field sizes of 2x2 and 10x10 cm(2). The Equivalent TAR method exhibited better agreement with Monte Carlo simulations for the 2x2 cm(2) field size. The magnitude of the effect on PDD due to the bony heterogeneity for 1x1, 2x2 and 10x10 cm(2) field sizes increases to 10, 5 and 3%, respectively.


Subject(s)
Bone and Bones/radiation effects , Computer Simulation , Monte Carlo Method , Bone and Bones/diagnostic imaging , Dose-Response Relationship, Radiation , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Water
8.
Rio de Janeiro; s.n; 2010. 85 p.
Thesis in Portuguese | LILACS, Coleciona SUS, Inca | ID: biblio-935075

ABSTRACT

A Braquiterapia é uma etapa essencial do tratamento de vários tipos de câncer. O uso de fontes de 192Ir com alta taxa de dose impõe a necessidade de procedimentos apropriados de calibração e controle da qualidade, de forma a garantir a exatidão da dose administrada. Um programa em GEANT4 foi desenvolvido para calcular grandezas dosimétricas em um fantoma de acrílico. Assim foi possível definir uma metodologia para avaliar a dose na vizinhança de uma fonte de braquiterapia utilizando um formalismo em função da grandeza dose absorvida na água para dosimetria termoluminescente. Um fantoma de acrlílico foi proposto e caracterizado com grandezas do protocolo TG- 3 calculadas pelo método de Monte Carlo. O fantoma foi irradiado com os TLDs no equipamento de braquiterapia do Varian Gammamed Plus, a dose e o kerma de referência calculado concordaram em 0,30%.


High dose rate Brachytherapy is an essential part of the treatment of several types of cancer. The use of high dose rate 192Ir sources requires appropriate calibration in order to ensure the desired level of accuracy of the dose delivered. A GEANT4 program was developed to calculate dosimetric quantities in an acrylic phantom. Thus it was possible to define a methodology for calculating the dose around a brachytherapy source using a termoluminescent dosimetry formalism in terms of water absorbed dose. An acrylic phantom was proposed and characterized with magnitudes protocol TG-43 calculated by Monte Carlo method. The phantom was irradiated in Varian's brachytherapy equipment Gammamed Plus, the dose and the kerma calculated reference agreed at 0,30%.


Subject(s)
Humans , Male , Female , Brachytherapy , Dosimetry , Postal Service , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...