Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EXCLI J ; 21: 869-887, 2022.
Article in English | MEDLINE | ID: mdl-36172071

ABSTRACT

This study aimed to test for the possible antinociceptive effect of the naturally occurring terpene citral in rodent models of acute and chronic orofacial pain and to test for the possible involvement of transient receptor potential (TRP) channels in this effect. Acute nociceptive behavior was induced in one series of experiments by administering formalin, cinnamaldehyde, menthol or capsaicin to the upper lip. Nociceptive behavior was assessed by orofacial rubbing, and the effects of pre-treatment with citral (0.1, 0.3 or 1.0 mg/Kg) or vehicle (control) were tested on the behavior. Nociceptive behavior was also induced by formalin injected into the temporomandibular joint or mustard oil injected into the masseter muscle, preceded by citral or vehicle (control) treatment. The chronic pain model involved infraorbital nerve transection (IONX) that induced mechanical hypersensitivity which was assessed by von Frey hair stimulation of the upper lip. Motor activity was also evaluated. Docking experiments were performed using TRPV1 and TRPM8 channels. Citral but not vehicle produced significant (p<0.01, ANOVA) antinociception on all the acute nociceptive behaviors, and these effects were attenuated by TRPV1 antagonist capsazepine, TRPM3 antagonist mefenamic acid and by TRPM8 desensitization, but not by ruthenium red and TRPA1 antagonist HC-030031. The IONX animals developed facial mechanical hypersensitivity that was significantly reduced by citral but not by vehicle. The docking experiments revealed that citral may interact with TRPV1 and TRPM8 channels. These results indicate the potential use of citral as an inhibitor of orofacial nociception in both acute and chronic pain states through TRPV1, TRPM3 and TRPM8 channels. See also Figure 1(Fig. 1).

2.
Antibiotics (Basel) ; 8(4)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795107

ABSTRACT

The aim of this study was to identify and evaluate the chemical compositions and effects of the S. tuberosa leaf and root hydroalcoholic extracts (HELST and HERST) against different strains of Candida. Chemical analysis was performed by Ultra-Performance Liquid Chromatography Coupled to Quadrupole/Time of Flight System (UPLC-MS-ESI-QTOF). The Inhibitory Concentration of 50% of the growth (IC50) as well as the intrinsic and combined action of the extracts with the antifungal fluconazole (FCZ) were determined by the microdilution method while the minimum fungicidal concentrations (MFCs) and the effect on fungal morphological transitions were analyzed by subculture and in humid chambers, respectively. From the preliminary phytochemical analysis, the phenols and flavonoids were the most abundant. The intrinsic IC50 values for HELST ranged from 5716.3 to 7805.8 µg/mL and from 6175.4 to 51070.9 µg/mL for the HERST, whereas the combination of the extracts with fluconazole presented IC50 values from 2.65 to 278.41 µg/mL. The MFC of the extracts, individually, for all the tested strains was ≥16384 µg/mL. When fluconazole was combined with each extract, the MFC against CA URM 5974 was reduced (HELST: 2048 and HERST: 4096 µg/mL). Synergism was observed against standard C. albicans (CA) and C. tropicalis (CT) strains and with the root extract against the CT isolate. The leaf extract inhibited the morphological transition of all strains while the root extract inhibited only CT strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...