Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 23(1): 214, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35296236

ABSTRACT

BACKGROUND: The "Assay for Transposase Accessible Chromatin sequencing" (ATAC-seq) is an efficient and easy to implement protocol to measure chromatin accessibility that has been widely used in multiple applications studying gene regulation. While several modifications or variants of the protocol have been published since it was first described, there has not yet been an extensive evaluation of the effects of specific protocol choices head-to-head in a consistent experimental setting. In this study, we tested multiple protocol options for major ATAC-seq components (including three reaction buffers, two reaction temperatures, two enzyme sources, and the use of either native or fixed nuclei) in a well-characterized cell line. With all possible combinations of components, we created 24 experimental conditions with four replicates for each (a total of 96 samples). In addition, we tested the 12 native conditions in a primary sample type (mouse lung tissue) with two different input amounts. Through these extensive comparisons, we were able to observe the effect of different ATAC-seq conditions on data quality and to examine the utility and potential redundancy of various quality metrics. RESULTS: In general, native samples yielded more peaks (particularly at loci not overlapping transcription start sites) than fixed samples, and the temperature at which the enzymatic reaction was carried out had a major impact on data quality metrics for both fixed and native nuclei. However, the effect of various conditions tested was not always consistent between the native and fixed samples. For example, the Nextera and Omni buffers were largely interchangeable across all other conditions, while the THS buffer resulted in markedly different profiles in native samples. In-house and commercial enzymes performed similarly. CONCLUSIONS: We found that the relationship between commonly used measures of library quality differed across temperature and fixation, and so evaluating multiple metrics in assessing the quality of a sample is recommended. Notably, we also found that these choices can bias the functional class of elements profiled and so we recommend evaluating several formulations in any new experiments. Finally, we hope the ATAC-seq workflow formulated in this study on crosslinked samples will help to profile archival clinical specimens.


Subject(s)
Cell Nucleus , Chromatin Immunoprecipitation Sequencing , Animals , Cell Nucleus/genetics , Chromatin/genetics , Formaldehyde , Mice , Sequence Analysis, DNA/methods
2.
Microbiol Spectr ; 9(2): e0077821, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34468162

ABSTRACT

Transition metals are necessary cofactors and structural elements in living systems. Exposure to high concentrations of biologically important transition metals, such as zinc and copper, results in cell toxicity. At the infection site, the immune system deploys metal sorbent proteins (e.g., lactoferrin and calprotectin) to starve pathogens of necessary metals (such as iron), while phagocytes expose engulfed pathogens to high levels of other metals, such as copper and zinc. The opportunistic pathogen Streptococcus pneumoniae (the pneumococcus) encounters macrophages during initial and protracted infections. The pneumococcus employs a copper export pathway, which improves colonization and persistent infection of the nasopharynx and the upper respiratory tract. Because copper is tightly regulated in the host, we instead sought to leverage the localized power of nutritional immunity by identifying small molecules with copper-dependent toxicity (CDT) through a targeted screen of compounds for antibiotic efficacy. We chose to include dithiocarbamates, based on the copper synergy observed in other organisms with 1-(diethylthiocarbamoyldisulfanyl)-N,N-diethyl-methanethioamide (tetraethylthiuram disulfide, disulfiram). We observed CDT of some dithiocarbamates in S. pneumoniae. Only N,N-dimethyldithiocarbamate (DMDC) was consistently toxic across a range of concentrations with copper both in vitro and in vivo against the pneumococcus. We also observed various degrees of CDT in vitro using DMDC in Staphylococcus aureus, Coccidioides posadasii, and Schistosoma mansoni. Collectively, we demonstrate that the compound DMDC is a potent bactericidal compound against S. pneumoniae with antimicrobial efficacy against bacterial and fungal pathogens. IMPORTANCE With the rise of antibiotic resistance, approaches that add new antimicrobials to the current repertoire are vital. Here, we investigate putative and known copper ionophores in an attempt to intoxicate bacteria and use ionophore/copper synergy, and we ultimately find success with N,N-dimethyldithiocarbamate (DMDC). We show that DMDC has in vitro efficacy in a copper-dependent manner and kills pathogens across three different kingdoms, Streptococcus pneumoniae, Coccidioides posadasii, and Schistosoma mansoni, and in vivo efficacy against S. pneumoniae. As such, dithiocarbamates represent a new potential class of antimicrobials and thus warrant further mechanistic investigation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Copper/toxicity , Dimethyldithiocarbamate/pharmacology , Respiratory Tract Infections/drug therapy , Animals , Bacteria , Coccidioides , Coccidioidomycosis , Disease Models, Animal , Female , Male , Metals , Mice , Mice, Inbred C57BL , Phagocytes/immunology , Respiratory System , Schistosoma , Staphylococcus aureus , Streptococcus pneumoniae , Zinc/toxicity
3.
mSphere ; 5(3)2020 05 27.
Article in English | MEDLINE | ID: mdl-32461276

ABSTRACT

Copper is broadly toxic to bacteria. As such, bacteria have evolved specialized copper export systems (cop operons) often consisting of a DNA-binding/copper-responsive regulator (which can be a repressor or activator), a copper chaperone, and a copper exporter. For those bacteria using DNA-binding copper repressors, few studies have examined the regulation of this operon regarding the operator DNA sequence needed for repressor binding. In Streptococcus pneumoniae (the pneumococcus), CopY is the copper repressor for the cop operon. Previously, homologs of pneumococcal CopY have been characterized to bind a 10-base consensus sequence T/GACANNTGTA known as the cop box. Using this motif, we sought to determine whether genes outside the cop operon are also regulated by the CopY repressor, which was previously shown in Lactococcus lactis We found that S. pneumoniae CopY did not bind to cop operators upstream of these candidate genes in vitro During this process, we found that the cop box sequence is necessary but not sufficient for CopY binding. Here, we propose an updated operator sequence for the S. pneumoniaecop operon to be ATTGACAAATGTAGAT binding CopY with a dissociation constant (Kd ) of ∼28 nM. We demonstrate strong cross-species interaction between some CopY proteins and CopY operators, suggesting strong evolutionary conservation. Taken together with our binding studies and bioinformatics data, we propose the consensus operator RNYKACANNYGTMRNY for the bacterial CopR-CopY copper repressor homologs.IMPORTANCE Many Gram-positive bacteria respond to copper stress by upregulating a copper export system controlled by a copper-sensitive repressor, CopR-CopY. The previous operator sequence for this family of proteins had been identified as TACANNTGTA. Here, using several recombinant proteins and mutations in various DNA fragments, we define those 10 bases as necessary but not sufficient for binding and in doing so, refine the cop operon operator to the 16-base sequence RNYKACANNTGTMRNY. Due to the sheer number of repressors that have been said to bind to the original 10 bases, including many antibiotic resistance repressors such as BlaI and MecI, we feel that this study highlights the need to reexamine many of these sites of the past and use added stringency for verifying operators in the future.


Subject(s)
Bacteria/genetics , Copper/metabolism , Operon , Repressor Proteins/genetics , Trans-Activators/genetics , Bacterial Proteins/genetics , DNA-Binding Proteins , Gene Expression Regulation, Bacterial , Sequence Alignment , Streptococcus pneumoniae/genetics
4.
J Struct Biol ; 198(3): 203-209, 2017 06.
Article in English | MEDLINE | ID: mdl-28433497

ABSTRACT

Clostridium difficile is the leading cause of hospital-acquired diarrhea and pseudomembranous colitis worldwide. The organism produces two homologous toxins, TcdA and TcdB, which enter and disrupt host cell function by glucosylating and thereby inactivating key signalling molecules within the host. As a toxin-mediated disease, there has been a significant interest in identifying small molecule inhibitors of the toxins' glucosyltransferase activities. This study was initiated as part of an effort to identify the mode of inhibition for a small molecule inhibitor of glucosyltransferase activity called apigenin. In the course of trying to get co-crystals with this inhibitor, we determined five different structures of the TcdA and TcdB glucosyltransferase domains and made use of a non-hydrolyzable UDP-glucose substrate. While we were able to visualize apigenin bound in one of our structures, the site was a crystal packing interface and not likely to explain the mode of inhibition. Nevertheless, the structure allowed us to capture an apo-state (one without the sugar nucleotide substrate) of the TcdB glycosyltransferase domain that had not been previously observed. Comparison of this structure with structures obtained in the presence of a non-hydrolyzable UDP-glucose analogue have allowed us to document multiple conformations of a C-terminal loop important for catalysis. We present our analysis of these five new structures with the hope that it will advance inhibitor design efforts for this important class of biological toxins.


Subject(s)
Apigenin/chemistry , Clostridioides difficile/pathogenicity , Glucosyltransferases/chemistry , Uridine Diphosphate Glucose/chemistry , Apigenin/pharmacology , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Binding Sites , Clostridioides difficile/enzymology , Enterotoxins/chemistry , Glucosyltransferases/antagonists & inhibitors , Molecular Structure , Protein Binding , Uridine Diphosphate Glucose/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...