Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 858(Pt 1): 159412, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36244475

ABSTRACT

Empirical evidence shows that climate, deforestation and informal housing (i.e. unregulated construction practices typical of fast-growing developing countries) can increase landslide occurrence. However, these environmental changes have not been considered jointly and in a dynamic way in regional or national landslide susceptibility assessments. This gap might be due to a lack of models that can represent large areas (>100km2) in a computationally efficient way, while simultaneously considering the effect of rainfall infiltration, vegetation and housing. We therefore suggest a new method that uses a hillslope-scale mechanistic model to generate regional susceptibility maps under changing climate and informal urbanisation, which also accounts for existing uncertainties. An application in the Caribbean shows that the landslide susceptibility estimated with the new method and associated with a past rainfall-intensive hurricane identifies ~67.5 % of the landslides observed after that event. We subsequently demonstrate that the hypothetical expansion of informal housing (including deforestation) increases landslide susceptibility more (+20 %) than intensified rainstorms due to climate change (+6 %). However, their combined effect leads to a much greater landslide occurrence (up to +40 %) than if the two drivers were considered independently. Results demonstrate the importance of including both land cover and climate change in landslide susceptibility assessments. Furthermore, by modelling mechanistically the overlooked dynamics between urban growth and climate change, our methodology can provide quantitative information of the main landslide drivers (e.g. quantifying the relative impact of deforestation vs informal urbanisation) and locations where these drivers are or might become most detrimental for slope stability. Such information is often missing in data-scarce developing countries but is key for supporting national long-term environmental planning, for targeting financial efforts, as well as for fostering national or international investments for landslide mitigation.


Subject(s)
Landslides , Climate Change , Housing , Caribbean Region
2.
Sci Rep ; 11(1): 21333, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716368

ABSTRACT

Inventories of seismically induced landslides provide essential information about the extent and severity of ground effects after an earthquake. Rigorous assessment of the completeness of a landslide inventory and the quality of a landslide susceptibility map derived from the inventory is of paramount importance for disaster management applications. Methods and materials applied while preparing inventories influence their quality, but the criteria for generating an inventory are not standardized. This study considered five landslide inventories prepared by different authors after the 2015 Gorkha earthquake, to assess their differences, understand the implications of their use in producing landslide susceptibility maps in conjunction with standard landslide predisposing factors and logistic regression. We adopted three assessment criteria: (1) an error index to identify the mutual mismatches between the inventories; (2) statistical analysis, to study the inconsistency in predisposing factors and performance of susceptibility maps; and (3) geospatial analysis, to assess differences between the inventories and the corresponding susceptibility maps. Results show that substantial discrepancies exist among the mapped landslides. Although there is no distinct variation in the significance of landslide causative factors and the performance of susceptibility maps, a hot spot analysis and cluster/outlier analysis of the maps revealed notable differences in spatial patterns. The percentages of landslide-prone hot spots and clustered areas are directly proportional to the size of the landslide inventory. The proposed geospatial approaches provide a new perspective to the investigators for the quantitative analysis of earthquake-triggered landslide inventories and susceptibility maps.

3.
Landsc Urban Plan ; 204: 103906, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32834266

ABSTRACT

Delineating boundaries of urban areas is no easy task, due to the inherent complexity of the problem, heterogeneity of relevant data and little consensus on how to properly measure the results. Any such delineation must eventually be cast onto administrative boundaries, an essential requirement for real-world applications. In the effort of relating administrative and alternative boundaries, we investigated in Italy the validity of general scaling laws, such as the area-population relation, and proposed a practical application. Relying on open data for population, settlements and road networks, we showed the extent to which scaling relations hold for different boundaries for urban areas, and how they compare to each other. We considered, beside Italian municipalities, urban areas based on the idea of "natural cities", obtained using head/tail breaks of areas related to human mobility as an explicit indicator of existence of a city. Area-population data for administrative boundaries can be reconciled with scaling relations valid for both the world's cities data and with those obtained from natural cities, provided an effective area is adopted in place of polygon planimetric area of municipalities. We eventually proposed an aggregation of administrative units using the empirical scaling relation as an objective function for accepting or rejecting pairwise fusion of boundaries. We suggest considering such a method, along with expert considerations, as an additional tool for real-world urban planning as seen from the very general perspective of seemingly abstract scaling laws.

4.
Sci Total Environ ; 630: 1528-1543, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29554770

ABSTRACT

The relation between climate change and its potential effects on the stability of slopes remains an open issue. For rainfall induced landslides, the point consists in determining the effects of the projected changes in the duration and amounts of rainfall that can initiate slope failures. We investigated the relationship between fine-scale climate projections obtained by downscaling and the expected modifications in landslide occurrence in Central Italy. We used rainfall measurements taken by 56 rain gauges in the 9-year period 2003-2011, and the RainFARM technique to generate downscaled synthetic rainfall fields from regional climate model projections for the 14-year calibration period 2002-2015, and for the 40-year projection period 2010-2049. Using a specific algorithm, we extracted a number of rainfall events, i.e. rainfall periods separated by dry periods of no or negligible amount of rain, from the measured and the synthetic rainfall series. Then, we used the selected rainfall events to forcethe Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model TRIGRS v. 2.1. We analyzed the results in terms of variations (or lack of variations) in the rainfall thresholds for the possible initiation of landslides, in the probability distribution of landslide size (area), and in landslide hazard. Results showed that the downscaled rainfall fields obtained by RainFARM can be used to single out rainfall events, and to force the slope stability model. Results further showed that while the rainfall thresholds for landslide occurrence are expected to change in future scenarios, the probability distribution of landslide areas are not. We infer that landslide hazard in the study area is expected to change in response to the projected variations in the rainfall conditions. We expect our results to contribute to regional investigations of the expected impact of projected climate variations on slope stability conditions and on landslide hazards.

SELECTION OF CITATIONS
SEARCH DETAIL
...