Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Analyst ; 149(12): 3433-3443, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38721993

ABSTRACT

A novel analysis technique of elements at ambient conditions has been developed. The technique is based on microwave-assisted laser-induced breakdown spectroscopy (MW-LIBS) applied to acoustically levitated samples. The technique has been demonstrated using three solid samples with different properties and compositions. These are ore containing multiple elements (OREAS 520), aluminium oxide (Al3O2) and gypsum (CaSO4·2H2O). The mass of samples was 21 mg, 23 mg, and 55 mg for gypsum, mineral ore, and Al3O2, respectively. Significant signal enhancements were recorded for a variety of elements, using microwave-assisted laser-induced breakdown spectroscopy and levitation (MW-LIBS-Levitation). The signal enhancement for Mn I (403.07 nm), Al I (396.13 nm) and Ca II (393.85 nm) was determined as 123, 46, and 63 times, respectively. Moreover, it was found that MW-LIBS-Levitation minimises the self-absorption of the Ca I (422.67 nm) and Na I (588.99 nm and 589.59 nm) spectral lines. In addition to the signal enhancements, the levitation process produces a spinning motion in the solids with an angular frequency of 7 Hz. This feature benefits laser-based analysis as a fresh sample is introduced at each laser pulse, eliminating the need for the usual mechanical devices. Based on the single-shot analysis, it was found that ∼80% of the laser pulses produced successful MW-LIBS-Levitation detection, confirming an impressive repeatability of the process. This contactless analytical technique can be applied in ambient pressure and temperature conditions with high sensitivity, which can benefit disciplines such as forensics science, isotope analysis, and medical analysis, where the sample availability is often diminutive.

2.
ACS Appl Mater Interfaces ; 16(12): 15059-15072, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498400

ABSTRACT

Dendrimers─nanosized macromolecules that can function as hosts for encapsulation of guest molecules─provide new avenues to engineer gain media for lasing systems. In this context, this study investigates the interplay between the geometric features of a model porous scattering medium, nanoporous anodic alumina (NAA), and the chemical features of a model fluorophore-dendrimer encapsulation system to maximize random lasing. The inner surface of the NAA platforms is functionalized with fluorophore molecules encapsulated within dendrimers via an electrostatic interaction. The resulting solid-state composite structures emit well-resolved, intense random lasing when subjected to optical pumping. By engineering fluorophore-dendrimer and geometric features of scattering medium, we can precisely tune the characteristics of random lasing emissions. It is found that lasing structures with low porosity and thickness functionalized with fluorophore molecules encapsulated in second-generation dendrimers provide the best platforms for lasing generation, resulting in a strongly polarized laser at ∼594 nm that has a high quality-gain product of ∼1588 au, a polarization quality of ∼0.86, and a lasing threshold of ∼0.05 mJ pulse-1. Comparative analysis indicates that dendrimers achieve 2.5 times better random lasing than conventional surfactants due to improved encapsulation and minimization of photobleaching. Our results reveal the importance of the fluorophore encapsulation method and design of scattering media in the engineering of random lasing platforms for applications in optical and optoelectrical systems.

3.
Biosensors (Basel) ; 12(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35200381

ABSTRACT

Suspension microsphere immunoassays are rapidly gaining attention in multiplex bioassays. Accurate detection of multiple analytes from a single measurement is critical in modern bioanalysis, which always requires complex encoding systems. In this study, a novel bioassay with Raman-coded antibody supports (polymer microbeads with different Raman signatures) and surface-enhanced Raman scattering (SERS)-coded nanotags (organic thiols on a gold nanoparticle surface with different SERS signatures) was developed as a model fluorescent, label-free, bead-based multiplex immunoassay system. The developed homogeneous immunoassays included two surface-functionalized monodisperse Raman-coded microbeads of polystyrene and poly(4-tert-butylstyrene) as the immune solid supports, and two epitope modified nanotags (self-assembled 4-mercaptobenzoic acid or 3-mercaptopropionic acid on gold nanoparticles) as the SERS-coded reporters. Such multiplex Raman/SERS-based microsphere immunoassays could selectively identify specific paratope-epitope interactions from one mixture sample solution under a single laser illumination, and thus hold great promise in future suspension multiplex analysis for diverse biomedical applications.


Subject(s)
Gold , Metal Nanoparticles , Immunoassay , Microspheres , Spectrum Analysis, Raman
4.
Opt Express ; 24(22): A1444-A1453, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-27828528

ABSTRACT

An efficient 3.168 kW solid-state solar thermal simulator (SSSTS), capable of supplying ~30,000 suns at a focal plane via a fibre optical delivery, has been developed. The source consists of 41 diode lasers, each operated at a wavelength and power of ~915 nm and ~80 watt, respectively. The SSSTS provides a semi-top hat radiation profile and can be focused to a diameter of ~10.5 mm. The electro-optical power efficiency of the SSSTS was evaluated to be 55%, where the maximum value of the uniform radiation flux exceeds 36.6MW/m2. As such, the present technology is relevant to solar thermal applications that are not wavelength-sensitive or where narrow line-width is desirable. Additionally, the fibre optical delivery feature enables ease of direction onto a suitable target, without the need of large ellipsoidal reflectors usually employed for the conventional arc solar simulators. To demonstrate the new SSSTS, ZnO:Zn particles were introduced into the path of the radiation to investigate the change in their own temperature by using the laser induced phosphorescence technique (LIP). The temperature of the averaged particles was measured at a different radiation flux over a ~87 mm2 cross sectional area. A change in the average particle temperature of up to 225°C was detected within the measurement volume when the SSSTS was operated at a flux of ~30,000 suns. The unique characteristics of the SSSTS, namely, the uniformity, high power flux, efficiency, ease of delivery, and precise control of the radiation flux responds to the current demands of solar thermal research.

5.
Opt Express ; 24(2): 1507-17, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26832530

ABSTRACT

The enhancement of laser-induced breakdown spectroscopy (LIBS) assisted with microwave radiation is demonstrated for an aqueous solution of indium using the 451.13 nm emission line. Microwave power was delivered via a near-field applicator to the LIBS measurement volume where the indium aqueous solution was presented as a liquid jet. The microwave enhancement effect was observed to decrease with increasing laser pulse fluence at 532 nm resulting in a maximum emission intensity occurring at a laser pulse fluence of 85.2 J∙cm(-2), independent of the microwave power used. The detection limits of indium in an aqueous solution were determined to be 10.8 ± 0.7 and 124 ± 5 ppm for the cases of microwave enhanced and standard LIBS, respectively. The 11.5-fold detection limit enhancement obtained in the liquid phase is of the same order of magnitude as that reported for other elements in solid samples, but lower than that obtained in solid phase utilizing a similar experimental setup. This establishes microwave enhancement as an effective technique for the detection of metals in aqueous solutions. In addition, the temporal evolution of plasma emission intensity was investigated and was found to be qualitatively similar to that of plasma produced from solid phase samples, which reveals the same coupling mechanism between laser generated plasma and microwave radiation.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(4): 1033-6, 2015 Apr.
Article in Japanese | MEDLINE | ID: mdl-26197597

ABSTRACT

During the combustion of coal or biomass, the inherent alkali metals in the fuel will be released to the gas phase. The released alkali species condensed during the cooling of the flue gas, which may subsequently cause problems with ash deposition and corrosion in thermal fuel conversion systems. Laser Induced Breakdown Spectroscopy (LIBS) is an effective technique to measure the alkali species in the plume of burning coal or biomass. In this study, an LIBS experimental system with a flat flame burner was set up, and the Flame Emission Spectroscopy (FES) and LIBS of K in the flat flame environment were measured using different ICCD gate-width times. The experimental results revealed that with the same ICCD gate-width time, the LIBS intensity of K was higher than the FES intensity of K in the flat flame. With the increase of the ICCD gate-width time, both intensities increased, but their increase rates were different: the increase rate of the LIBS intensity of K was firstly fast then became slow, but the increase rate of the FES intensity of K was constant. Furthermore, the intensity ratio of LIBS to FES of K increased monotonically with the ICCD gate-width time in the range of 0-8 µs, until reaching approximately 4. Then, further increasing the ICCD gate-width time, such ratio decreased slowly with an asymptote value of 1. After analyzing the influences of the FES on the LIBS measurement of K in a flame condition, it is proposed that to minimize such influence, the optimization of the ICCD gate-width time was necessary, which maximized the intensity ratio of LIBS to FES-of K and facilitated the measurement accuracy of K in the flame environment using LIBS.

7.
Appl Spectrosc ; 66(7): 803-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22710315

ABSTRACT

This paper presents the first demonstration of the pulsed laser ablation technique to seed a laminar non-reacting gaseous jet at atmospheric pressure. The focused, second harmonic from a pulsed Nd : YAG laser is used to ablate a neutral indium rod at atmospheric pressure and temperature. The ablation products generated with the new seeding method are used to seed the jet, as a marker of the scalar field. The neutral indium atoms so generated are found to be stable and survive a convection time of the order of tens of seconds before entering the interrogation region. The measurements of planar laser-induced fluorescence (PLIF) with indium and laser nephelometry measurements with the ablation products are both reported. The resulting average and root mean square (RMS) of the measurements are found to agree reasonably well although some differences are found. The results show that the pulsed laser ablation method has potential to provide scalar measurement for mixing studies.

8.
Appl Opt ; 51(1): 55-63, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22270413

ABSTRACT

Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 µm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C.

9.
Appl Spectrosc ; 65(6): 684-91, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21639991

ABSTRACT

A quantitative point measurement of total sodium ([Na](total)) and potassium ([K](total)) in the plume of a burning particle of Australian Loy Yang brown coal (23 ± 3 mg) and of pine wood pellets (63 ± 3 mg) was performed using laser-induced breakdown spectroscopy (LIBS) in a laminar premixed methane flame at equivalence ratios ( U ) of 1.149 and 1.336. Calibration was performed using atomic sodium or potassium generated by evaporation of droplets of sodium sulfite (Na(2)SO(3)) or potassium sulfate (K(2)SO(4)) solutions seeded into the flame. The calibration compensated for the absorption by atomic alkalis in the seeded flame, which is significant at high concentrations of solution. This allowed quantitative measurements of sodium (Na) and potassium (K) released into the flame during the three phases of combustion, namely devolatilization, char, and ash cooking. The [Na](total) in the plume released from the combustion of pine wood pellets during the devolatilization was found to reach up to 13 ppm. The maximum concentration of total sodium ([Na](max)M(total)) and potassium ([K](max)(total)) released during the char phase of burning coal particles for φ = 1.149 was found to be 9.27 and 5.90 ppm, respectively. The [Na](max)(total) and [K](max)(total) released during the char phase of burning wood particles for φ = 1.149 was found to be 15.1 and 45.3 ppm, respectively. For the case of φ = 1.336, the [Na](max)(total) and [K](max)(total) were found to be 13.9 and 6.67 ppm during the char phase from burning coal particles, respectively, and 21.1 and 39.7 ppm, respectively, from burning wood particles. The concentration of alkali species was higher during the ash phase. The limit of detection (LOD) of sodium and potassium with LIBS in the present arrangement was estimated to be 29 and 72 ppb, respectively.

10.
Appl Opt ; 49(8): 1257-66, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-20220881

ABSTRACT

We aim to investigate the potential of four different organic solvents, namely, acetone, ethanol, methanol, and isopropanol, and the organic-solvent-water mixtures as a seeding medium for the two-line atomic fluorescence technique. Water is used as the reference case. Indium, which has been previously shown to have suitable spectroscopic attributes, is chosen as the thermometry species in the present study. Acetone and methanol are shown to enhance the fluorescence signal intensity the most (approximately threefold to fivefold at stoichiometric conditions) when used. Acetone and methanol are shown to improve the fluorescence emission over the entire stoichiometric envelope of flame, most significantly in the rich combustion region, as well as a twofold enhancement in the signal-to-noise ratio.

11.
Appl Spectrosc ; 64(2): 173-6, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20149278

ABSTRACT

This work investigates the first demonstration of nonlinear regime two-line atomic fluorescence (NTLAF) thermometry in laminar non-premixed flames. The results show the expediency of the technique in the study of the reaction zone and reveals interesting findings about the indium atomization process. Indium fluorescence is observed to be strongest at the flame-front, where the temperature exceeds 1000 K. The uncertainty in the deduced temperature measurement is approximately 6%. The temperature profile across the reaction zone shows good agreement with laminar flame calculations. The advantages and inherent limitations of the technique are discussed.

12.
Appl Opt ; 48(6): 1237-48, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-23567586

ABSTRACT

This work aims to advance understanding of the coupling between temperature and soot. The ability to image temperature using the two-line atomic fluorescence (TLAF) technique is demonstrated. Previous TLAF theory is extended from linear excitation into the nonlinear fluence regime. Nonlinear regime two-line atomic fluorescence (NTLAF) provides superior signal and reduces single-shot uncertainty from 250 K for conventional TLAF down to 100 K. NTLAF is shown to resolve the temperature profile across the stoichiometric envelope for hydrogen, ethylene, and natural gas flames, with deviation from thermocouple measurements not exceeding 100 K, and typically ≲30 K. Measurements in flames containing soot demonstrate good capacity of NTLAF to exclude interferences that hamper most two-dimensional thermometry techniques.

13.
Appl Spectrosc ; 61(5): 565-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17555627

ABSTRACT

The application of polarization spectroscopy (PS) to detect atomic species in an atmospheric pressure welding plasma has been demonstrated. PS spectra of Na atoms, seeded in the shielding gas flow of a gas tungsten arc welding (GTAW) plasma, are presented at different pump beam energies. The nature of the PS technique was found to be very efficient in suppressing the high background emission associated with the welding plasma. The PS spectral profiles appear to be Lorentzian and Lorentzian cubed for high and low pump beam energy, respectively. The effect of beam steering, due to the thermal gradient in the interaction plasma zone, was addressed. It was found that there is 2% unavoidable error in the detectable PS signal.


Subject(s)
Algorithms , Gases/chemistry , Hot Temperature , Lasers , Refractometry/methods , Spectrum Analysis/methods , Materials Testing
14.
Appl Opt ; 41(21): 4267-72, 2002 Jul 20.
Article in English | MEDLINE | ID: mdl-12148753

ABSTRACT

Planar laser polarization spectroscopy has recently been used to image the hydroxyl radical in combustion for small intersection angles of pump and probe beams. We report an experimental configuration that allows planar laser polarization imaging for perpendicular intersection of pump and probe beams. We demonstrate what to our knowledge is the first planar laser polarization spectroscopy imaging at a 90 degree intersection of pump and probe beams for both linearly and circularly polarized pump beams.

SELECTION OF CITATIONS
SEARCH DETAIL
...