Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Mol Biol Rep ; 51(1): 721, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829450

ABSTRACT

BACKGROUND: Cancer and multidrug resistance are regarded as concerns related to poor health outcomes. It was found that the monolayer of 2D cancer cell cultures lacks many important features compared to Multicellular Tumor Spheroids (MCTS) or 3D cell cultures which instead have the ability to mimic more closely the in vivo tumor microenvironment. This study aimed to produce 3D cell cultures from different cancer cell lines and to examine the cytotoxic activity of anticancer medications on both 2D and 3D systems, as well as to detect alterations in the expression of certain genes levels. METHOD: 3D cell culture was produced using 3D microtissue molds. The cytotoxic activities of colchicine, cisplatin, doxorubicin, and paclitaxel were tested on 2D and 3D cell culture systems obtained from different cell lines (A549, H1299, MCF-7, and DU-145). IC50 values were determined by MTT assay. In addition, gene expression levels of PIK3CA, AKT1, and PTEN were evaluated by qPCR. RESULTS: Similar cytotoxic activities were observed on both 3D and 2D cell cultures, however, higher concentrations of anticancer medications were needed for the 3D system. For instance, paclitaxel showed an IC50 of 6.234 µM and of 13.87 µM on 2D and 3D H1299 cell cultures, respectively. Gene expression of PIK3CA in H1299 cells also showed a higher fold change in 3D cell culture compared to 2D system upon treatment with doxorubicin. CONCLUSION: When compared to 2D cell cultures, the behavior of cells in the 3D system showed to be more resistant to anticancer treatments. Due to their shape, growth pattern, hypoxic core features, interaction between cells, biomarkers synthesis, and resistance to treatment penetration, the MCTS have the advantage of better simulating the in vivo tumor conditions. As a result, it is reasonable to conclude that 3D cell cultures may be a more promising model than the traditional 2D system, offering a better understanding of the in vivo molecular changes in response to different potential treatments and multidrug resistance development.


Subject(s)
Antineoplastic Agents , Cell Culture Techniques , Spheroids, Cellular , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Spheroids, Cellular/drug effects , Cell Culture Techniques/methods , Doxorubicin/pharmacology , Paclitaxel/pharmacology , Cisplatin/pharmacology , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Cell Culture Techniques, Three Dimensional/methods , MCF-7 Cells , Gene Expression Regulation, Neoplastic/drug effects , Cell Survival/drug effects
2.
Curr Drug Targets ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38676513

ABSTRACT

The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which Chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.

3.
Heliyon ; 9(11): e22459, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38106656

ABSTRACT

Mitochondrial complex V (ATP synthase) is a remarkable molecular motor crucial in generating ATP and sustaining mitochondrial function. Its importance in cellular metabolism cannot be overstated, as malfunction of ATP synthase has been linked to various pathological conditions. Both natural and synthetic ATP synthase inhibitors have been extensively studied, revealing their inhibitory sites and modes of action. These findings have opened exciting avenues for developing new therapeutics and discovering new pesticides and herbicides to safeguard global food supplies. However, it is essential to remember that these compounds can also adversely affect human and animal health, impacting vital organs such as the nervous system, heart, and kidneys. This review aims to provide a comprehensive overview of mitochondrial ATP synthase, its structural and functional features, and the most common inhibitors and their potential toxicities.

4.
RSC Adv ; 13(32): 22193-22204, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37492505

ABSTRACT

The hypolipidemic effect of furan carboxamide derivatives was investigated using the Triton WR-1339 rat model. Nineteen compounds were synthesized, including furan-2-carboxamides of benzophenones and acetophenones (a(1-4)), anilines and amine derivatives (a(5-9)), picolinic-2-carboxamide derivatives of benzophenones and acetophenone (a(10-12)) and furan-2-carboxylate esters of benzophenones and acetophenones, substituted phenols and alcohols (b(1-7)). All the necessary steps were taken to synthesize, purify, and characterize these compounds. They were synthesized by reacting acyl chlorides of the heterocycles with their corresponding amines in the presence of pyridine and tert-butyl acetate. While the conventional heating method yielded acceptable yields for some of the reactions under reflux, the microwave synthesis reactor achieved significantly higher yields for others. Rats with hyperlipidemia were induced with Triton WR-1339 and then subjected to in vivo testing via an intraperitoneal injection of 200 mg kg-1 Triton WR-1339. The model was tested using an oral dose of bezafibrate (100 mg kg-1). After 7 hours of treatment with Triton, the new derivatives represented by compounds a(1-2), a(4-5), a7, and a(10-12) showed significant activity against the complete lipid profile, including a decrease in triglyceride, total cholesterol, and low-density lipoprotein cholesterol and an increase in high-density lipoprotein cholesterol plasma levels. At 20 mg kg-1 dose, these compounds were superior to other lipid-lowering agents in reducing triglyceride levels and slightly increased high-density lipoprotein cholesterol levels. These results indicate a mutual mechanism of action of novel compounds with fibrates, where they have a marked effect on triglyceride and high-density lipoprotein cholesterol levels; for example, a5 causes a significant reduction (p 0.0001) of triglyceride levels by 86%, and a remarkable increase (p 0.0001) in high-density lipoprotein cholesterol plasma levels by 65% as compared to hyperlipidemic rats.

5.
Int J Surg Case Rep ; 107: 108367, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37271023

ABSTRACT

INTRODUCTION AND IMPORTANCE: The most frequent benign uterine tumor is uterine fibroids. Approximately, 20 to 30 % of women between the ages of 30 and 50 have them. Teenagers do, however, rarely experience them; the prevalence is less than 1 % in general population. CASE PRESENTATION: We present a 17-year-old nulliparous female who was admitted to the hospital due to gradually increasing abdominopelvic pain. Transabdominal pelvic ultrasound showed massive uterine enlargement, with a heterogenous structure within the fundus measuring 9.8 cm in diameter. Pelvic MRI revealed an enlarged uterus with a heterogeneous complex mass measuring 10.78 cm by 8 cm that seemed to be compressing but was not attached to the endometrium The findings from the radiology review were concerning for leiomyoma. Intraoperative findings showed a 13-cm anterior intramural mass with normally appearing fallopian tubes and ovaries bilaterally. Resection of the mass was done, and the entire specimen was sent to pathology which confirmed the diagnosis of leiomyoma. DISCUSSION: Occurrence of uterine fibroids in the young and adolescent age is extremely rare with an estimated prevalence of less than 1 %. Leiomyosarcoma is a less frequent diagnosis to take into account, but it can be identified histologically. Therefore, a myomectomy that preserves fertility enables a diagnostic chance to rule out a probable cancer. CONCLUSION: When young women present with steadily worsening abdominopelvic discomfort, it is crucial to include leiomyomas in the differential diagnosis despite the rarity of leiomyomas in adolescents.

6.
Int J Surg Case Rep ; 106: 108287, 2023 May.
Article in English | MEDLINE | ID: mdl-37148729

ABSTRACT

INTRODUCTION AND IMPORTANCE: A rare disorder called ovarian torsion (OT) during pregnancy can harm both the mother and the fetus. Predisposing variables for the condition include enlarged ovaries, free mobility, and a long pedicle, despite the fact that its genesis is not entirely understood. When ovarian stimulation is used to treat infertility, the disease's incidence rises. Magnetic resonance imaging and ultrasound are examples of diagnostic imaging modalities (MRI). CASE PRESENTATION: A 26-year-old woman with a 33-week pregnancy presented to our emergency department with acute, severe left groin pain. Laboratory evaluation was unremarkable except for leukocytosis (18.800/µL) with neutrophil shift. A radiologist used ultrasound to examine the abdomen and pelvis, and the results revealed a bulk enlargement of the left adnexa. The patient underwent a non-enhanced MRI in order to obtain a conclusive diagnosis, which revealed a massive enlargement and torsion of the left ovary with large areas of necrosis. The patient underwent a successful laparoscopic adnexectomy with preservation of the pregnancy. She delivered a healthy baby and had an uneventful follow up period. DISCUSSION: The etiology of OT is largely unknown. Any tendency to rotate the infundibulopelvic and utero-ovarian ligaments should be considered as a possible etiology. The prevalence of OT among pregnant women is underreported and determined by small limited studies. CONCLUSION: Ovarian torsion should be included in the differential diagnosis of patients with suspected acute abdomen in advanced stages of pregnancy. In addition, MRI should be used as an alternative diagnostic modality in patients with normal sonographic findings.

7.
EXCLI J ; 22: 146-168, 2023.
Article in English | MEDLINE | ID: mdl-36998701

ABSTRACT

Bortezomib (BTZ) is a first-in-class reversible and selective proteasome inhibitor. It inhibits the ubiquitin proteasome pathway that leads to the degradation of many intracellular proteins. Initially, BTZ was FDA approved for the treatment of refractory or relapsed multiple myeloma (MM) in 2003. Later, its usage was approved for patients with previously untreated MM. In 2006, BTZ was approved for the treatment of relapsed or refractory Mantle Cell Lymphoma (MCL) and, in 2014, for previously untreated MCL. BTZ has been extensively studied either alone or in combination with other drugs for the treatment of different liquid tumors especially in MM. However, limited data evaluated the efficacy and safety of using BTZ in patients with solid tumors. In this review, we will discuss the advanced and novel mechanisms of action of BTZ documented in MM, solid tumors and liquid tumors. Moreover, we will shed the light on the newly discovered pharmacological effects of BTZ in other prevalent diseases.

8.
Antibiotics (Basel) ; 12(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36830249

ABSTRACT

Honey is considered to be a functional food with health-promoting properties. However, its potential health benefits can be affected by individual composition that varies between honey types. Although studies describing the health benefits of Tualang honey (TH), Kelulut honey (KH), and Sidr honey (SH) are scarce, these honey types showed a comparable therapeutic efficacy to Manuka honey (MH). The purpose of this review is to characterise the physicochemical, biological, and therapeutic properties of TH, KH, and SH. Findings showed that these honeys have antibacterial, antifungal, antiviral, antioxidant, antidiabetic, antiobesity, anticancer, anti-inflammatory and wound-healing properties and effects on the cardiovascular system, nervous system, and respiratory system. The physicochemical characteristics of TH, KH, and SH were compared with MH and discussed, and results showed that they have high-quality contents and excellent biological activity sources. Flavonoids and polyphenols, which act as antioxidants, are two main bioactive molecules present in honey. The activity of honey depends on the type of bee, sources of nectar, and the geographic region where the bees are established. In conclusion, TH, KH, and SH could be considered as natural therapeutic agents for various medicinal purposes compared with MH. Therefore, TH, KH, and SH have a great potential to be developed for modern medicinal use.

9.
J Exp Clin Cancer Res ; 42(1): 25, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36670508

ABSTRACT

BACKGROUND: Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored. METHODS: EDI3 mRNA and protein expression in human breast cancer tissue were investigated using publicly-available Affymetrix gene expression microarray datasets (n = 540) and with immunohistochemistry on a tissue microarray (n = 265), respectively. A panel of breast cancer cell lines of different molecular subtypes were used to investigate expression and activity of EDI3 in vitro. To determine whether EDI3 expression is regulated by HER2 signalling, the effect of pharmacological inhibition and siRNA silencing of HER2, as well as the influence of inhibiting key components of signalling cascades downstream of HER2 were studied. Finally, the influence of silencing and pharmacologically inhibiting EDI3 on viability was investigated in vitro and on tumour growth in vivo. RESULTS: In the present study, we show that EDI3 expression is highest in ER-HER2 + human breast tumours, and both expression and activity were also highest in ER-HER2 + breast cancer cell lines. Silencing HER2 using siRNA, as well as inhibiting HER2 signalling with lapatinib decreased EDI3 expression. Pathways downstream of PI3K/Akt/mTOR and GSK3ß, and transcription factors, including HIF1α, CREB and STAT3 were identified as relevant in regulating EDI3 expression. Silencing EDI3 preferentially decreased cell viability in the ER-HER2 + cells. Furthermore, silencing or pharmacologically inhibiting EDI3 using dipyridamole in ER-HER2 + cells resistant to HER2-targeted therapy decreased cell viability in vitro and tumour growth in vivo. CONCLUSIONS: Our results indicate that EDI3 may be a potential novel therapeutic target in patients with HER2-targeted therapy-resistant ER-HER2 + breast cancer that should be further explored.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Phosphatidylinositol 3-Kinases , Cell Line, Tumor , Choline/metabolism , Choline/therapeutic use , RNA, Small Interfering , Receptor, ErbB-2/metabolism , Drug Resistance, Neoplasm/genetics , Phospholipases/genetics
10.
Nat Commun ; 13(1): 6845, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369173

ABSTRACT

Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.


Subject(s)
Neoplasms , Phosphoric Monoester Hydrolases , Humans , Phosphoric Monoester Hydrolases/metabolism , Glycolysis
11.
Cancers (Basel) ; 14(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35565325

ABSTRACT

Benzofuran is a heterocyclic compound found naturally in plants and it can also be obtained through synthetic reactions. Multiple physicochemical characteristics and versatile features distinguish benzofuran, and its chemical structure is composed of fused benzene and furan rings. Benzofuran derivatives are essential compounds that hold vital biological activities to design novel therapies with enhanced efficacy compared to conventional treatments. Therefore, medicinal chemists used its core to synthesize new derivatives that can be applied to a variety of disorders. Benzofuran exhibited potential effectiveness in chronic diseases such as hypertension, neurodegenerative and oxidative conditions, and dyslipidemia. In acute infections, benzofuran revealed anti-infective properties against microorganisms like viruses, bacteria, and parasites. In recent years, the complex nature and the number of acquired or resistant cancer cases have been largely increasing. Benzofuran derivatives revealed potential anticancer activity with lower incidence or severity of adverse events normally encountered during chemotherapeutic treatments. This review discusses the structure-activity relationship (SAR) of several benzofuran derivatives in order to elucidate the possible substitution alternatives and structural requirements for a highly potent and selective anticancer activity.

12.
Cancers (Basel) ; 14(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35326714

ABSTRACT

Thymomas and thymic carcinomas (TC) are malignant thymic epithelial tumors (TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and may offer new therapeutic options. Metabolic profiles of snap-frozen thymomas (WHO types A, AB, B1, B2, B3, n = 12) and TCs (n = 3) were determined by high resolution magic angle spinning 1H nuclear magnetic resonance (HRMAS 1H-NMR) spectroscopy. Metabolite-based prediction of active KEGG metabolic pathways was achieved with MetPA. In relation to metabolite-based metabolic pathways, gene expression signatures of TETs (n = 115) were investigated in the public "The Cancer Genome Atlas" (TCGA) dataset using gene set enrichment analysis. Overall, thirty-seven metabolites were quantified in TETs, including acetylcholine that was not previously detected in other non-endocrine cancers. Metabolite-based cluster analysis distinguished clinically indolent (A, AB, B1) and aggressive TETs (B2, B3, TCs). Using MetPA, six KEGG metabolic pathways were predicted to be activated, including proline/arginine, glycolysis and glutathione pathways. The activated pathways as predicted by metabolite-profiling were generally enriched transcriptionally in the independent TCGA dataset. Shared high lactic acid and glutamine levels, together with associated gene expression signatures suggested a strong "Warburg effect", glutaminolysis and redox homeostasis as potential vulnerabilities that need validation in a large, independent cohort of aggressive TETs. If confirmed, targeting metabolic pathways may eventually prove as adjunct therapeutic options in TETs, since the metabolic features identified here are known to confer resistance to cisplatin-based chemotherapy, kinase inhibitors and immune checkpoint blockers, i.e., currently used therapies for non-resectable TETs.

13.
Anal Chem ; 93(40): 13485-13494, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34478621

ABSTRACT

Three-dimensional cell cultures are of growing importance in biochemical research as they represent tissue features more accurately than standard two-dimensional systems, but to investigate these challenging new models an adaptation of established analytical techniques is required. Spatially resolved data for living organoids are needed to gain insight into transport processes and biochemical characteristics of domains with different nutrient supply and waste product removal. Within this work, we present an NMR-based approach to obtain dynamically radial metabolite profiles for cell spheroids, one of the most frequently used 3D models. Our approach combines an easy to reproduce custom-made measurement design, maintaining physiological conditions without inhibition of the NMR experiment, with spatially selective NMR pulse sequences. To overcome the inherently low sensitivity of NMR spectroscopy we excited slices instead of smaller cube-like voxels in combination with an efficient interleaved measurement approach and employed a commercially available cryogenic NMR probe. Finally, radial metabolite profiles could be obtained via double Abel inversion of the measured one-dimensional intensity profiles. Applying this method to Ty82 cancer cell spheroids demonstrates the achieved spatial resolution, for instance confirming exceedingly high lactic acid and strongly decreased glucose concentrations in the oxygen-depleted core of the spheroid. Furthermore, our approach can be employed to investigate fast and slow metabolic changes in single spheroids simultaneously, which is shown as an example of a spheroid degrading over several days after stopping the nutrient supply.


Subject(s)
Metabolomics , Spheroids, Cellular , Cell Culture Techniques , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
14.
Cells ; 10(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-34359827

ABSTRACT

Cancer is a disorder characterized by an uncontrollable overgrowth and a fast-moving spread of cells from a localized tissue to multiple organs of the body, reaching a metastatic state. Throughout years, complexity of cancer progression and invasion, high prevalence and incidence, as well as the high rise in treatment failure cases leading to a poor patient prognosis accounted for continuous experimental investigations on animals and cellular models, mainly with 2D- and 3D-cell culture. Nowadays, these research models are considered a main asset to reflect the physiological events in many cancer types in terms of cellular characteristics and features, replication and metastatic mechanisms, metabolic pathways, biomarkers expression, and chemotherapeutic agent resistance. In practice, based on research perspective and hypothesis, scientists aim to choose the best model to approach their understanding and to prove their hypothesis. Recently, 3D-cell models are seen to be highly incorporated as a crucial tool for reflecting the true cancer cell microenvironment in pharmacokinetic and pharmacodynamics studies, in addition to the intensity of anticancer drug response in pharmacogenomics trials. Hence, in this review, we shed light on the unique characteristics of 3D cells favoring its promising usage through a comparative approach with other research models, specifically 2D-cell culture. Plus, we will discuss the importance of 3D models as a direct reflector of the intrinsic cancer cell environment with the newest multiple methods and types available for 3D-cells implementation.


Subject(s)
Cell Culture Techniques/methods , Medical Oncology , Translational Research, Biomedical , Animals , Drug Discovery , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Precision Medicine
15.
Breast Cancer ; 28(6): 1358-1366, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34370280

ABSTRACT

BACKGROUND: Metastasis and drug resistance remain a persistent key clinical obstacle to the success of breast cancer treatments. Recent years have seen an increased focus on understanding the factors that influence metastasis and drug resistance. METHODS: In this study, the changes in MMPs gene expression were investigated together with their regulatory pathways-PI3K, MAPK and NFKß pathways-during the process of developing tamoxifen resistance in MCF7 cell line. Gene correlation maps and Kaplan-Meier survival plots among all breast cancer patients and patients treated with tamoxifen were evaluated. RESULTS: MMPs gene expression was found to be up regulated in MCF7 cell line treated with tamoxifen during the development of tamoxifen resistance using two approaches. Up-regulation of gene expression of AKT1 and MAPK1 started in cells treated with 10 µM tamoxifen that was followed with up-regulation of other genes in these pathways and MMPs in cells treated with 35 µM tamoxifen. MMPs and genes from PI3K, MAPK and NFKß pathways showed highly significant increase of expression at 50 µM or when cells were treated sequentially six times with 35 µM. Furthermore, increased genes expression was associated with aggressive pattern, clear morphological changes, higher growth rate, increased migration and adhesion potential and tamoxifen insensitivity. Breast cancer distant metastasis-free survival, and survival among tamoxifen treated patients had high expression levels of MAPK1, AKT1, TIMP2, MMP1, and MMP9 showed poor prognosis. CONCLUSION: Early changes of MAPK1, AKT1 gene expression upon tamoxifen treatment could possibly be used as an early marker of resistance and future poor prognosis.


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/genetics , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Tamoxifen/therapeutic use , Breast Neoplasms/drug therapy , Female , Humans , Metalloproteases/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Phosphatidylinositol 3-Kinases/metabolism
16.
EXCLI J ; 18: 51-62, 2019.
Article in English | MEDLINE | ID: mdl-30956639

ABSTRACT

Repeated administration of hepatotoxicants is usually accompanied by liver fibrosis. However, the difference in response as a result of repeated exposures of acetaminophen (APAP) compared to a single dose is not well-studied. Therefore, in the current study, the liver response after a second dose of APAP was investigated. Adult fasted Balb/C mice were exposed to two toxic doses of 300 mg/kg APAP, which were administered 72 h apart from each other. Subsequently, blood and liver from the treated mice were collected 24 h and 72 h after both APAP administrations. Liver transaminase, i.e. alanine amino transferase (ALT) and aspartate amino transferase (AST) levels revealed that the fulminant liver damage was reduced after the second APAP administration compared to that observed at the same time point after the first treatment. These results correlated with the necrotic areas as indicated by histological analyses. Surprisingly, Picro Sirius Red (PSR) staining showed that the accumulation of extracellular matrix after the second dose coincides with the upregulation of some fibrogenic signatures, e.g., alpha smooth muscle actin. Non-targeted liver tissue metabolic profiling indicates that most alterations occur 24 h after the first dose of APAP. However, the levels of most metabolites recover to basal values over time. This organ adaptation process is also confirmed by the upregulation of antioxidative systems like e.g. superoxide dismutase and catalase. From the results, it can be concluded that there is a different response of the liver to APAP toxic doses, if the liver has already been exposed to APAP. A necroinflammatory process followed by a liver regeneration was observed after the first APAP exposure. However, fibrogenesis through the accumulation of extracellular matrix is observed after a second challenge. Therefore, further studies are required to mechanistically understand the so called "liver memory".

SELECTION OF CITATIONS
SEARCH DETAIL
...