Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 297(6): 101314, 2021 12.
Article in English | MEDLINE | ID: mdl-34715128

ABSTRACT

Normal physiology relies on the precise coordination of intracellular signaling pathways that respond to nutrient availability to balance cell growth and cell death. The canonical mitogen-activated protein kinase pathway consists of the RAF-MEK-ERK signaling cascade and represents one of the most well-defined axes within eukaryotic cells to promote cell proliferation, which underscores its frequent mutational activation in human cancers. Our recent studies illuminated a function for the redox-active micronutrient copper (Cu) as an intracellular mediator of signaling by connecting Cu to the amplitude of mitogen-activated protein kinase signaling via a direct interaction between Cu and the kinases MEK1 and MEK2. Given the large quantities of molecules such as glutathione and metallothionein that limit cellular toxicity from free Cu ions, evolutionarily conserved Cu chaperones facilitate efficient delivery of Cu to cuproenzymes. Thus, a dedicated cellular delivery mechanism of Cu to MEK1/2 likely exists. Using surface plasmon resonance and proximity-dependent biotin ligase studies, we report here that the Cu chaperone for superoxide dismutase (CCS) selectively bound to and facilitated Cu transfer to MEK1. Mutants of CCS that disrupt Cu(I) acquisition and exchange or a CCS small-molecule inhibitor were used and resulted in reduced Cu-stimulated MEK1 kinase activity. Our findings indicate that the Cu chaperone CCS provides fidelity within a complex biological system to achieve appropriate installation of Cu within the MEK1 kinase active site that in turn modulates kinase activity and supports the development of novel MEK1/2 inhibitors that target the Cu structural interface or blunt dedicated Cu delivery mechanisms via CCS.


Subject(s)
Copper/metabolism , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , Molecular Chaperones/metabolism , Cell Line , Enzyme Activation , Humans , Protein Binding
2.
Biochemistry ; 58(44): 4436-4446, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31626532

ABSTRACT

The M centers of the mononuclear monooxygenases peptidylglycine monooxygenase (PHM) and dopamine ß-monooxygenase bind and activate dioxygen en route to substrate hydroxylation. Recently, we reported the rational design of a protein-based model in which the CusF metallochaperone was repurposed via a His to Met mutation to act as a structural and spectroscopic biomimic. The PHM M site exhibits a number of unusual attributes, including a His2Met ligand set, a fluxional Cu(I)-S(Met) bond, tight binding of exogenous ligands CO and N3-, and complete coupling of oxygen reduction to substrate hydroxylation even at extremely low turnover rates. In particular, mutation of the Met ligand to His completely eliminates the catalytic activity despite the propensity of CuI-His3 centers to bind and activate dioxygen in other metalloenzyme systems. Here, we further develop the CusF-based model to explore methionine variants in which Met is replaced by selenomethionine (SeM) and histidine. We examine the effects on coordinate structure and exogenous ligand binding via X-ray absorption spectroscopy and electron paramagnetic resonance and probe the consequences of mutations on redox chemistry via studies of the reduction by ascorbate and oxidation via molecular oxygen. The M-site model is three-coordinate in the Cu(I) state and binds CO to form a four-coordinate carbonyl. In the oxidized forms, the coordination changes to tetragonal five-coordinate with a long axial Met ligand that like the enzymes is undetectable at either the Cu or Se K edges. The EXAFS data at the Se K edge of the SeM variant provide unique information about the nature of the Cu-methionine bond that is likewise weak and fluxional. Kinetic studies document the sluggish reactivity of the Cu(I) complexes with molecular oxygen and rapid rates of reduction of the Cu(II) complexes by ascorbate, indicating a remarkable stability of the Cu(I) state in all three derivatives. The results show little difference between the Met ligand and its SeM and His congeners and suggest that the Met contributes to catalysis in ways that are more complex than simple perturbation of the redox chemistry. Overall, the results stimulate a critical re-examination of the canonical reaction mechanisms of the mononuclear copper monooxygenases.


Subject(s)
Catalytic Domain , Copper Transport Proteins/chemistry , Escherichia coli Proteins/chemistry , Histidine/chemistry , Mixed Function Oxygenases/chemistry , Multienzyme Complexes/chemistry , Selenomethionine/chemistry , Amino Acid Substitution , Ascorbic Acid/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Copper Transport Proteins/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Mutation , Oxidation-Reduction , Oxygen/chemistry
3.
Proc Natl Acad Sci U S A ; 116(42): 20850-20855, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31570604

ABSTRACT

The enzyme [FeFe]-hydrogenase (HydA1) contains a unique 6-iron cofactor, the H-cluster, that has unusual ligands to an Fe-Fe binuclear subcluster: CN-, CO, and an azadithiolate (adt) ligand that provides 2 S bridges between the 2 Fe atoms. In cells, the H-cluster is assembled by a collection of 3 maturases: HydE and HydF, whose roles aren't fully understood, and HydG, which has been shown to construct a [Fe(Cys)(CO)2(CN)] organometallic precursor to the binuclear cluster. Here, we report the in vitro assembly of the H-cluster in the absence of HydG, which is functionally replaced by adding a synthetic [Fe(Cys)(CO)2(CN)] carrier in the maturation reaction. The synthetic carrier and the HydG-generated analog exhibit similar infrared spectra. The carrier allows HydG-free maturation to HydA1, whose activity matches that of the native enzyme. Maturation with 13CN-containing carrier affords 13CN-labeled enzyme as verified by electron paramagnetic resonance (EPR)/electron nuclear double-resonance spectra. This synthetic surrogate approach complements existing biochemical strategies and greatly facilitates the understanding of pathways involved in the assembly of the H-cluster. As an immediate demonstration, we clarify that Cys is not the source of the carbon and nitrogen atoms in the adt ligand using pulse EPR to target the magnetic couplings introduced via a 13C3,15N-Cys-labeled synthetic carrier. Parallel mass-spectrometry experiments show that the Cys backbone is converted to pyruvate, consistent with a cysteine role in donating S in forming the adt bridge. This mechanistic scenario is confirmed via maturation with a seleno-Cys carrier to form HydA1-Se, where the incorporation of Se was characterized by extended X-ray absorption fine structure spectroscopy.


Subject(s)
Bacterial Proteins/chemistry , Cysteine/chemistry , Hydrogenase/chemistry , Iron/chemistry , Organometallic Compounds/chemistry , Sulfur/chemistry , Bacterial Proteins/metabolism , Catalysis , Catalytic Domain , Cysteine/metabolism , Electron Spin Resonance Spectroscopy , Iron/metabolism , Organometallic Compounds/metabolism , Sulfur/metabolism
4.
Inorg Chem ; 58(19): 12601-12608, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31539235

ABSTRACT

The radical SAM enzyme HydG generates CO- and CN--containing Fe complexes that are involved in the bioassembly of the [FeFe] hydrogenase active cofactor, the H-cluster. HydG contains a unique 5Fe-4S cluster in which the fifth "dangler" Fe and the coordinating cysteine molecule have both been shown to be essential for its function. Here, we demonstrate that this dangler Fe can be replaced with Ni2+ or Co2+ and that the cysteine can be replaced with selenocysteine. The resulting HydG variants were characterized by electron paramagnetic resonance and X-ray absorption spectroscopy, as well as subjected to a Tyr cleavage assay. Both Ni2+ and Co2+ are shown to be exchange-coupled to the 4Fe-4S cluster, and selenocysteine substitution does not alter the electronic structure significantly. XAS data provide details of the coordination environments near the Ni, Co, and Se atoms and support a close interaction of the dangler metal with the FeS cluster via an asymmetric SeCys bridge. Finally, while we were unable to observe the formation of novel organometallic species for the Ni2+ and Co2+ variants, the selenocysteine variant retains the activity of wild type HydG in forming [Fe(CO)x(CN)y] species. Our results provide more insights into the unique auxiliary cluster in HydG and expand the scope of artificially generated Fe-S clusters with heteroatoms.


Subject(s)
Bacterial Proteins/chemistry , Cobalt/chemistry , Iron-Sulfur Proteins/chemistry , Nickel/chemistry , Selenocysteine/chemistry , Shewanella/chemistry , Catalytic Domain , Cysteine/chemistry
5.
Biochemistry ; 58(28): 3097-3108, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31243953

ABSTRACT

Mononuclear copper monooxygenases peptidylglycine monooxygenase (PHM) and dopamine ß-monooxygenase (DBM) catalyze the hydroxylation of high energy C-H bonds utilizing a pair of chemically distinct copper sites (CuH and CuM) separated by 11 Å. In earlier work, we constructed single-site PHM variants that were designed to allow the study of the M- and H-centers independently in order to place their reactivity sequentially along the catalytic pathway. More recent crystallographic studies suggest that these single-site variants may not be truly representative of the individual active sites. In this work, we describe an alternative approach that uses a rational design to construct an artificial PHM model in a small metallochaperone scaffold. Using site-directed mutagenesis, we constructed variants that provide a His2Met copper-binding ligand set that mimics the M-center of PHM. The results show that the model accurately reproduces the chemical and spectroscopic properties of the M-center, including details of the methionine coordination, and the properties of Cu(I) and Cu(II) states in the presence of endogenous ligands such as CO and azide. The rate of reduction of the Cu(II) form of the model by the chromophoric reductant N,N'-dimethyl phenylenediamine (DMPD) has been compared with that of the PHM M-center, and the reaction chemistry of the Cu(I) forms with molecular oxygen has also been explored, revealing an unusually low reactivity toward molecular oxygen. This latter finding emphasizes the importance of substrate triggering of oxygen reactivity and implies that the His2Met ligand set, while necessary, is insufficient on its own to activate oxygen in these enzyme systems.


Subject(s)
Copper/metabolism , Histidine/metabolism , Metallochaperones/metabolism , Methionine/metabolism , Mixed Function Oxygenases/metabolism , Models, Chemical , Animals , Binding Sites/physiology , Copper/chemistry , Histidine/chemistry , Metallochaperones/chemistry , Methionine/chemistry , Mixed Function Oxygenases/chemistry , Protein Structure, Secondary
6.
Commun Biol ; 1: 192, 2018.
Article in English | MEDLINE | ID: mdl-30456313

ABSTRACT

Escherichia coli CusCBAF represents an important class of bacterial efflux pump exhibiting selectivity towards Cu(I) and Ag(I). The complex is comprised of three proteins: the CusA transmembrane pump, the CusB soluble adaptor protein, and the CusC outer-membrane pore, and additionally requires the periplasmic metallochaperone CusF. Here we used spectroscopic and kinetic tools to probe the mechanism of copper transfer between CusF and CusB using selenomethionine labeling of the metal-binding Met residues coupled to RFQ-XAS at the Se and Cu edges. The results indicate fast formation of a protein-protein complex followed by slower intra-complex metal transfer. An intermediate coordinated by ligands from each protein forms in 100 ms. Stopped-flow fluorescence of the capping CusF-W44 tryptophan that is quenched by metal transfer also supports this mechanism. The rate constants validate a process in which shared-ligand complex formation assists protein association, providing a driving force that raises the rate into the diffusion-limited regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...