Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Healthc Eng ; 2022: 1112598, 2022.
Article in English | MEDLINE | ID: mdl-35529544

ABSTRACT

Currently, several methods are being applied to assess auditory temporal resolution in a controlled clinical environment via the measurements of gap detection thresholds (GDTs). However, these methods face two issues: the relatively long time required to perform the gap detection test in such settings and the potential of inaccessibility to such facilities. This article proposes a fast, affordable, and reliable application-based method for the determination of GDT either inside or outside the soundproof booth. The proposed test and the acoustic stimuli were both developed using the MATLAB® programming platform. GDT is determined when the subject is able to distinguish the shortest silent gap inserted randomly in one of two segments of white noise. GDTs were obtained from 42 normal-hearing subjects inside and outside the soundproof booth. The results of this study indicated that average GDTs measured inside the booth (5.12 ± 1.02 ms) and outside (4.78 ± 1.16 ms) were not significantly different. The measured GDTs were also comparable to that reported in the literature. In addition, the GDT screening time of the proposed method was approximately 5 minutes, a screening time that is much less than that reported by the literature. Data show that the proposed application was fast and reliable to screen GDT compared to the standard method currently used in clinical settings.


Subject(s)
Hearing , Noise , Acoustic Stimulation/methods , Humans , Software
2.
Healthcare (Basel) ; 9(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34946427

ABSTRACT

Bedsores, also known as pressure ulcers, are wounds caused by the applied external force (pressure) on body segments, thereby preventing blood supply from delivering the required elements to the skin tissue. Missing elements hinder the skin's ability to maintain its health. It poses a significant threat to patients that have limited mobility. A new patented mattress design and alternative suggested designs aimed to reduce pressure are investigated in this paper for their performance in decreasing pressure. A simulation using Ansys finite element analysis (FEA) is carried out for comparison. Three-dimensional models are designed and tested in the simulation for a mattress and human anthropometric segments (Torso and Hip). All designs are carried out in solidworks. Results show that the original design can redistribute the pressure and decrease it up to 17% less than the normal mattress. The original design shows better ability to decrease the absolute amount of pressure on the body. However, increasing the surface area of the movable parts results in less pressure applied to the body parts. Thus, this work suggests changing the surface area of the cubes from 25 to 100 cm2.

3.
Nanomaterials (Basel) ; 11(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34443707

ABSTRACT

The purpose of this paper was to detect and separate the cluster intensity provided by Iron oxide nanoparticles (IO-NPs), in the MRI images, to investigate the drug delivery effectiveness. IO-NPs were attached to the macrophages and inserted into the eye of the inflamed mouse's calf. The low resolution of MRI and the tiny dimension of the IO-NPs made the situation challenging. IO-NPs serve as a marker, due to their strong intensity in the MRI, enabling us to follow the track of the macrophages. An image processing procedure was developed to estimate the position and the amount of IO-NPs spreading inside the inflamed mouse leg. A fuzzy Clustering algorithm was adopted to select the region of interest (ROI). A 3D model of the femoral region was used for the detection and then the extraction IO-NPs in the MRI images. The results achieved prove the effectiveness of the proposed method to improve the control process of targeted drug delivered. It helps in optimizing the treatment and opens a promising novel research axis for nanomedicine applications.

4.
Bosn J Basic Med Sci ; 21(2): 242-245, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33052078

ABSTRACT

The COVID-19 pandemic tested medical facilities' readiness in terms of the number of available mechanical ventilators. Most countries raced to stock up on ventilators, which created a surge in demand and short in supply. Furthermore, other means of coping with the demand were proposed, such as using additive manufacturing. The purpose of this paper was to test whether the addition of 3D-printed splitters would help deliver required tidal volume to each patient, while supporting four patients on a single ventilator for 24 hours on pressure mode at 25-cm H2O, and to determine whether a fifth patient can be ventilated. The ventilation of four human lungs was simulated using 3D printed parts, a single ventilator, four test-lungs, and standard tubing. Peak pressure, positive end-expiratory pressure, total tidal volume, individual tidal volume, total minute volume, and individual tidal volume data were collected. Usage of a 3D printed small size splitter enabled a 26% increase in individual tidal volume compared to standard tubing and a series of two-way splitters. The ventilator was able to supply the required pressure and tidal volume for 24 hours. A single ventilator with a four-way splitter can ventilate four patients experiencing respiratory failure for at least 24 hours without interruption. The equipment cannot sustain ventilating a fifth patient owing to minute volume limitation. This study expands on an earlier study that tested similar circuitry and reveals that the desired individual tidal volume is achieved. However, further research is required to provide the monitoring ability of individual patient parameters and prevention of cross-contamination.


Subject(s)
COVID-19/therapy , SARS-CoV-2 , Ventilators, Mechanical , COVID-19/epidemiology , Humans , Printing, Three-Dimensional , Tidal Volume
5.
J Biomech Eng ; 139(3)2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27925635

ABSTRACT

A novel application of phase-space warping (PSW) method to detect fatigue in the musculoskeletal system is presented. Experimental kinematic, force, and physiological signals are used to produce a fatigue metric. The metric is produced using time-delay embedding and PSW methods. The results showed that by using force and kinematic signals, an overall estimate of the muscle group state can be achieved. Further, when using electromyography (EMG) signals the fatigue metric can be used as a tool to evaluate muscles activation and load sharing patterns for individual muscles. The presented method will allow for fatigue evolution measurement outside a laboratory environment, which open doors to applications such as tracking the physical state of players during competition, workers in a plant, and patients undergoing in-home rehabilitation.


Subject(s)
Electromyography , Muscle Fatigue , Adult , Biomechanical Phenomena , Female , Humans , Male , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...