Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38611848

ABSTRACT

Sugar industries generate substantial quantities of waste biomass after the extraction of sugar water from sugarcane stems, while biomass-derived porous carbon has currently received huge research attention for its sustainable application in energy storage systems. Hence, we have investigated waste sugarcane bagasse (WSB) as a cheap and potential source of porous carbon for supercapacitors. The electrochemical capacitive performance of WSB-derived carbon was further enhanced through hybridization with silicon dioxide (SiO2) as a cost-effective pseudocapacitance material. Porous WSB-C/SiO2 nanocomposites were prepared via the in situ pyrolysis of tetraethyl orthosilicate (TEOS)-modified WSB biomass. The morphological analysis confirms the pyrolytic growth of SiO2 nanospheres on WSB-C. The electrochemical performance of WSB-C/SiO2 nanocomposites was optimized by varying the SiO2 content, using two different electrolytes. The capacitance of activated WSB-C was remarkably enhanced upon hybridization with SiO2, while the nanocomposite electrode demonstrated superior specific capacitance in 6 M KOH electrolyte compared to neutral Na2SO4 electrolyte. A maximum specific capacitance of 362.3 F/g at 0.25 A/g was achieved for the WSB-C/SiO2 105 nanocomposite. The capacitance retention was slightly lower in nanocomposite electrodes (91.7-86.9%) than in pure WSB-C (97.4%) but still satisfactory. A symmetric WSB-C/SiO2 105//WSB-C/SiO2 105 supercapacitor was fabricated and achieved an energy density of 50.3 Wh kg-1 at a power density of 250 W kg-1, which is substantially higher than the WSB-C//WSB-C supercapacitor (22.1 Wh kg-1).

2.
Polymers (Basel) ; 15(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36987308

ABSTRACT

Polypyrrole (PPy) nanoparticles are reliable conducting polymers with many industrial applications. Nevertheless, owing to disadvantages in structure and morphology, producing PPy with high electrical conductivity is challenging. In this study, a chemical oxidative polymerization-assisted ultra-sonication method was used to synthesize PPy with high conductivity. The influence of critical sonication parameters such as time and power on the structure, morphology, and electrical properties was examined using response surface methodology. Various analyses such as SEM, FTIR, DSC, and TGA were performed on the PPy. An R2 value of 0.8699 from the regression analysis suggested a fine correlation between the observed and predicted values of PPy conductivity. Using response surface plots and contour line diagrams, the optimum sonication time and sonication power were found to be 17 min and 24 W, respectively, generating a maximum conductivity of 2.334 S/cm. Meanwhile, the model predicted 2.249 S/cm conductivity, indicating successful alignment with the experimental data and incurring marginal error. SEM results demonstrated that the morphology of the particles was almost spherical, whereas the FTIR spectra indicated the presence of certain functional groups in the PPy. The obtained PPy with high conductivity can be a promising conducting material with various applications, such as in supercapacitors, sensors, and other smart electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...