Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Orthop Trauma ; 38(10): e339-e346, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39325574

ABSTRACT

OBJECTIVES: A variable pitch locking screw is intended to provide interfragmentary compression combined with fixed angle stability of locking plate constructs. The objective of this study was to compare variable pitch locking screws (3.5-mm KreuLock Ti locking compression screws, Arthrex Inc., Naples, FL) with standard locking screws (from the same manufacturer) in bicortical fixation scenarios in cadaver bone by assessing (1) interfragmentary compression and plate-bone compression and (2) construct biomechanical stability. METHODS: Nine matched pairs of fresh-frozen cadaveric specimens with an average age of 67.2 years (range, 37-83) were used. Interfragmentary compression and plate-bone compression associated with insertion of single bicortical screws were compared between the variable pitch and standard locking screws at increasing levels of torque. The specimens tested were distal tibiae having a simulated longitudinal fracture. Additionally, fibulae were osteotomized to create a stable longitudinal fracture pattern and were fixed with a 5-screw plate construct with either all variable pitch or all standard locking screws. One of the 5 screws was placed across the osteotomy without lagging. Fibulae were tested cyclically with axial with torsional loading to compare displacements, rotation, and loads at failure or tested in 4-point bending to compare construct stiffness and maximum force to failure. RESULTS: Interfragmentary and plate-bone compression forces in the distal tibia model varied across specimens but were significantly higher with variable pitch locking screws compared with standard locking screws [512 N (SD = 324 N) vs. 79 N (SD = 64 N), P = 0.002, and 242 N (SD = 119 N) vs. 104 N (SD = 123 N), P = 0.028, respectively]. In cyclic loading of fibula constructs, no significant differences were detected in construct axial displacement or angular displacement (P > 0.05). In 4-point bending, no differences were detected in maximum force or bending stiffness (P > 0.05). CONCLUSIONS: Variable pitch locking screws produced interfragmentary compression between cortices and plate-bone compression that was greater than that produced by standard locking screws. In a stable bicortical fibula fixation scenario under external loading, the stability of variable pitch locking screw constructs was similar to constructs with standard locking screws.


Subject(s)
Bone Plates , Bone Screws , Cadaver , Fracture Fixation, Internal , Humans , Aged , Aged, 80 and over , Middle Aged , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Adult , Female , Male , Compressive Strength , Tibial Fractures/surgery , Equipment Failure Analysis , Biomechanical Phenomena
2.
J Biomed Mater Res B Appl Biomater ; 111(8): 1533-1545, 2023 08.
Article in English | MEDLINE | ID: mdl-36965183

ABSTRACT

Biomaterial-associated microbial infection is one of the most frequent and severe complications associated with the use of biomaterials in medical devices. In previous studies, we developed new fluorinated polyphosphazenes, poly[bis(octafluoropentoxy) phosphazene] (OFP) and crosslinkable OFP (X-OFP), and demonstrated the inhibition of bacterial adhesion and biofilm formation, thereby controlling microbial infection. In this study, two additional fluorinated polyphosphazenes (PPs, defined as LS02 and LS03) with fluorophenoxy-substituted side groups, 4-fluorophenoxy and 4-(trifluoromethyl)phenoxy, respectively, based on X-OFP general structure, were synthesized and applied as coatings on stainless steel. The linkage of fluorophenoxy groups to the P-N backbone of PPs was found to increase the surface stiffness and significantly reduced Staphylococcus bacterial adhesion and inhibited biofilm formation. It also significantly reduced microbial infection compared to OFP, our prior X-OFPs or poly[bis(trifluoroethoxy) phosphazene] (TFE). The biofilm experiments show that the newly synthesized PPs LS02 and LS03 are biofilm free up to 28 days. Plasma coagulation and platelet adhesion/activation experiments also demonstrated that new PPs containing fluorophenoxy side groups are hemocompatible. The development of new crosslinkable fluorinated PPs containing fluorophenoxy-substituted side groups provides a new generation of polyphosphazene materials for medical devices with improved resistance to microbial infections and thrombosis formation.


Subject(s)
Anti-Infective Agents , Biocompatible Materials , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Bacterial Adhesion , Biofilms , Staphylococcus , Anti-Infective Agents/pharmacology
3.
Molecules ; 27(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36500393

ABSTRACT

Human jumping translocation breakpoint (hJTB) gene is located on chromosome 1q21 and is involved in unbalanced translocation in many types of cancer. JTB protein is ubiquitously present in normal cells but it is found to be overexpressed or downregulated in various types of cancer cells, where this protein and its isoforms promote mitochondrial dysfunction, resistance to apoptosis, genomic instability, proliferation, invasion and metastasis. Hence, JTB could be a tumor biomarker for different types of cancer, such as breast cancer (BC), and could be used as a drug target for therapy. However, the functions of the protein or the pathways through which it increases cell proliferation and invasiveness of cancer cells are not well-known. Therefore, we aim to investigate the functions of JTB by using in-solution digestion-based cellular proteomics of control and upregulated and downregulated JTB protein in MCF7 breast cancer cell line, taking account that in-solution digestion-based proteomics experiments are complementary to the initial in-gel based ones. Proteomics analysis allows investigation of protein dysregulation patterns that indicate the function of the protein and its interacting partners, as well as the pathways and biological processes through which it functions. We concluded that JTB dysregulation increases the epithelial-mesenchymal transition (EMT) potential and cell proliferation, harnessing cytoskeleton organization, apical junctional complex, metabolic reprogramming, and cellular proteostasis. Deregulated JTB expression was found to be associated with several proteins involved in mitochondrial organization and function, oxidative stress (OS), apoptosis, and interferon alpha and gamma signaling. Consistent and complementary to our previous results emerged by using in-gel based proteomics of transfected MCF7 cells, JTB-related proteins that are overexpressed in this experiment suggest the development of a more aggressive phenotype and behavior for this luminal type A non-invasive/poor-invasive human BC cell line that does not usually migrate or invade compared with the highly metastatic MDA-MB-231 cells. This more aggressive phenotype of MCF7 cells related to JTB dysregulation and detected by both in-gel and in-solution proteomics could be promoted by synergistic upregulation of EMT, Mitotic spindle and Fatty acid metabolism pathways. However, in both JTB dysregulated conditions, several downregulated JTB-interacting proteins predominantly sustain antitumor activities, attenuating some of the aggressive phenotypical and behavioral traits promoted by the overexpressed JTB-related partners.


Subject(s)
Breast Neoplasms , Proteomics , Humans , Female , MCF-7 Cells , Proteomics/methods , Epithelial-Mesenchymal Transition/genetics , Apoptosis/genetics , Cell Proliferation , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/genetics , Neoplasm Invasiveness
4.
Am J Cancer Res ; 12(9): 4373-4398, 2022.
Article in English | MEDLINE | ID: mdl-36225631

ABSTRACT

MCF7 is a commonly used luminal type A non-invasive/poor-invasive human breast cancer cell line that does not usually migrate or invade compared with MDA-MB-231 highly metastatic cells, which emphasize an invasive and migratory behavior. Under special conditions, MCF7 cells might acquire invasive features. The aberration in expression and biological functions of the jumping translocation breackpoint (JTB) protein is associated with malignant transformation of cells, based on mitochondrial dysfunction, inhibition of tumor suppressive function of TGF-ß, and involvement in cancer cell cycle. To investigate new putative functions of JTB by cellular proteomics, we analyzed the biological processes and pathways that are associated with the JTB protein downregulation. The results demonstrated that MCF7 cell line developed a more "aggressive" phenotype and behavior. Most of the proteins that were overexpressed in this experiment promoted the actin cytoskeleton reorganization that is involved in growth and metastatic dissemination of cancer cells. Some of these proteins are involved in the epithelial-mesenchymal transition (EMT) process (ACTBL2, TUBA4A, MYH14, CSPG5, PKM, UGDH, HSP90AA2, and MIF), in correlation with the energy metabolism reprogramming (PKM, UGDH), stress-response (HSP10, HSP70A1A, HSP90AA2), and immune and inflammatory response (MIF and ERp57-TAPBP). Almost all upregulated proteins in JTB downregulated condition promote viability, motility, proliferation, invasion, survival into a hostile microenvironment, metabolic reprogramming, and escaping of tumor cells from host immune control, leading to a more invasive phenotype for MCF7 cell line. Due to their downregulated condition, four proteins, such as CREBZF, KMT2B, SELENOS and CACNA1I are also involved in maintenance of the invasive phenotype of cancer cells, promoting cell proliferation, migration, invasion and tumorigenesis. Other downregulated proteins, such as MAZ, PLEKHG2, ENO1, TPI2, TOR2A, and CNNM1, may promote suppression of cancer cell growth, invasion, EMT, tumorigenic abilities, interacting with glucose and lipid metabolism, disrupting nuclear envelope stability, or suppressing apoptosis and developing anti-angiogenetic activities. Therefore, the main biological processes and pathways that may increase the tumorigenic potential of the MCF7 cells in JTB downregulated condition are related to the actin cytoskeleton organization, EMT, mitotic cell cycle, glycolysis and fatty acid metabolism, inflammatory response and macrophage activation, chemotaxis and migration, cellular response to stress condition (oxidative stress and hypoxia), transcription control, histone modification and ion transport.

5.
Am J Cancer Res ; 12(4): 1784-1823, 2022.
Article in English | MEDLINE | ID: mdl-35530281

ABSTRACT

Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.

6.
Proteomics ; 22(4): e2100146, 2022 02.
Article in English | MEDLINE | ID: mdl-34676671

ABSTRACT

Lake trout (Salvelinus namaycush) are a top-predator species in the Laurentian Great Lakes that are often used as bioindicators of chemical stressors in the ecosystem. Although many studies are done using these fish to determine concentrations of stressors like legacy persistent, bioaccumulative and toxic chemicals, there are currently no proteomic studies on the biological effects these stressors have on the ecosystem. This lack of proteomic studies on Great Lakes lake trout is because there is currently no complete, comprehensive protein database for this species. Here, we employed proteomics approaches to develop a lake trout protein database that could aid in future research on this fish, in particular exposomics and adductomics. The current study utilized heart tissue and blood from two lake trout. Our previous work using lake trout liver revealed 4194 potential protein hits in the NCBI databases and 3811 potential protein hits in the UniProtKB databases. In the current study, using the NCBI databases we identified 838 proteins for the heart and 580 proteins for the blood tissues in the biological replicate 1 (BR1) and 1180 potential protein hits for the heart and 561 potential protein hits for the blood in BR2. Similar results were obtained using the UniProtKB databases. This study builds on our previous work by continuing to build the first comprehensive lake trout protein database and provides insight into protein homology through evolutionary relationships. This data is available via the PRIDE partner repository with the dataset identifier PXD023970.


Subject(s)
Ecosystem , Proteomics , Animals , Databases, Protein , Lakes , Trout/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL