Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 28(4): 2566-2574, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33935572

ABSTRACT

AIM: Therapeutic choices for cancer patients include many combinations of therapeutic protocols. The present study aimed to investigate and discuss the combined effects of magnetic field and chemotherapy treatment on Ehrlich tumor-induced growth in Swiss albino mice. The benefits of both treatments are discussed and interpreted. METHODS: Fifty adult male mice were randomly divided into two groups; ten mice in the first group served as control group and forty in the second group which received a single dose IP injection of tumor fluid (0.02 Ml) to induce tumor. Ten days post injection to allow the tumor to growth, the 40 mice were sub- divided in to 4 sub-groups 10 mice pre each to introduce the treatment. RESULTS: The results indicated tumor growth inhibition regarding mean tumor volume variation (ml) presented. All treatments display tumor growth prevention effect compared to control untreated mice. Treatment with Dox + 7G (MF) exposure exhibited a significant inhibition of tumor growth than that treated alone with DOX or magnetic field; 82% inhibition for DOX + MF 7 G against 60% for 7 G , and 31% for DOX only. Optical density data show a higher values of the molar absorption coefficient ε for all treated groups than untreated one. The fluorescence emission spectra of Hb show an emission peaks λem at 465, 515, and 639 nm. Hematological examination might indicate to discriminative effects to RBCs, WBCs or/and Hb for all treated groups. Moreover, treatment with Dox + 7G MF shows a proper discriminative effects than that treatment with DOX or magnetic field only. Osmotic fragility (OF) test indicates that the combination between drug and magnetic field have nontoxic effect against RBCs membrane. CONCLUSION: Our findings support further exploration of the potential of magnetic fields in cancer therapeutics, either as adjunct or primary therapy. It may be due to enhancing the drug interaction with tumor cells which increase the therapeutic index of DOX and resulted in increased anti-tumor activity against Ehrlich tumor models. These benefits promote the use of the magnetic field in cancer with chemotherapy over the other traditional treatment agents this highly adapted manner can be used in improving the clinical treatment protocol and fights against cancer.

2.
Int J Pharm ; 601: 120557, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33798687

ABSTRACT

The development of a scaffold matrix to promote wound healing is a critical requirement to improve the health care system. For this purpose, electrospun scaffolds of polycaprolactone (PCL) have been encapsulated with hydroxyapatite (HAP) doped with different contributions Ag ions. The obtained scaffolds have been investigated by XRD, FTIR and FESEM. It was shown that scaffolds were configured as cross-linked network with diameters around 0.6, 0.9, 2.1, and 2.5 µm for 0.0Ag/Fe-HAP@PCL, 0.4Ag/Fe-HAP@PCL, 0.6Ag/Fe-HAP@PCL, and 0.8Ag/Fe-HAP@PCL, respectively. Additionally, the composition of 0.8Ag/Fe-HAP@PCL exhibited the highest roughness average of 34 nm, while the inorganic root of co-dopant HAP recorded 44.8 nm. The mechanical properties have been investigated and showed that the maximum strain at break was about 129.31 ± 5.4% at no additional Ag ions, and reached its lowest value of 103.02 ± 3.5% at 0.2Ag/Fe-HAP@PCL. On the other hand, cell viability increased from 94.74 ± 4 to 98.9 ± 4% for 0.0Ag/Fe-HAP@PCL and 0.6Ag/Fe-HAP@PCL, respectively. Further, the antibacterial activity was investigated and exhibited that the inhibition zones of E. coli increased from 0.0 at 0.0Ag/Fe-HAP@PCL to 7.5 ± 1.3 mm for 0.8Ag/Fe-HAP@PCL. Moreover, the in vitro cell attachment showed that fibroblast cells proliferated and spread on the fibers' surface and through scaffolds' porosity.


Subject(s)
Durapatite , Silver , Cell Adhesion , Escherichia coli , Polyesters , Tissue Engineering , Tissue Scaffolds
3.
Int J Pharm ; 598: 120325, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33539995

ABSTRACT

A combination of nanostructured zinc oxide (ZnO) or graphene oxide or both of them with cellulose acetate (CA) enhances a new functionality of nanofibers aiming to improve bio-composite materials for wound healing application. The obtained nanofibers have been investigated using XRD, FTIR, and FESEM. It was observed that the maximum height of the roughness increased from 253 to 651.9 nm for both GO and ZnO/GO in the powdered phase, while it plunged from 613 to 482 nm and developed to 801 nm for ZnO@CA, GO@CA, and ZnO/GO@CA, receptively. Further, the mechanical properties of the obtained scaffolds have been tested and displayed a tremendous variation of tensile strength from 5.44 ± 0.81 to 12.87 ± 0.93 and 8.82 ± 1.2 MPa, while the toughness increased from 23.29 ± 1.4 to 68.95 ± 4.5 and 57.75 ± 3.6 MJ/m3 for ZnO@CA, GO@CA and ZnO/GO@CA, receptively. Moreover, the cell viability was investigated and showed a progression of 97.38 ± 3.9% for ZnO/GO@CA. Furthermore, the adhesion of human fibroblasts cell line towards the obtained nanofibrous scaffolds were examined and displayed that cells were proliferated and spread considerably through the scaffolds, whereas their filopodia have followed the morphology of the fibers.


Subject(s)
Nanofibers , Zinc Oxide , Anti-Bacterial Agents/therapeutic use , Cellulose/analogs & derivatives , Graphite , Humans , Wound Healing
4.
Radiat Prot Dosimetry ; 156(3): 321-30, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23554427

ABSTRACT

Clays are among the most important industrially used minerals. Three potential clay mineral mining sites in Saudi Arabia were chosen, and 21 clay deposit samples were collected. The activity concentrations (average±standard deviation) of the naturally occurring radioactive materials (NORMs), (238)U, (226)Ra, (232)Th, (228)Ra and (40)K, were 49±20, 47±23, 34±11, 40±20 and 751 Bq kg(-1), respectively. The radiation dose assessments (e.g., absorbed dose rate, nGy h(-1); effective dose equivalent, µSv y(-1); and effective dose rate due to dust inhalation, µSv y(-1)) and hazardous indices (e.g., radium equivalent [Ra-eq] value, external hazardous index [Hex], internal hazardous index [Hin] and representative gamma level [Iγ]) were calculated. The wide variations in the activity concentrations of the NORMs according to sampling region could be due to the origin of the geological formation and the geochemical behaviour of the NORMs. Based on calculated hazardous (external and internal) indices, there were no expected radiological hazardous impacts of using clay deposits as building materials.


Subject(s)
Aluminum Silicates/analysis , Background Radiation , Construction Materials/analysis , Radiation Monitoring , Soil Pollutants, Radioactive/analysis , Clay , Potassium Radioisotopes/analysis , Radiation Dosage , Radium/analysis , Saudi Arabia , Thorium/analysis , Uranium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...