Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36299421

ABSTRACT

The coronavirus disease 2019 (COVID19) continues to spread despite global vaccination efforts (1). This, alongside the rapid emergence of vaccine resistant variants, creates a need for orthogonal therapeutic strategies targeting more conserved facets of severe acute respiratory syndrome coronavirus (SARS-CoV-2) (2-4). One conserved feature of all coronaviruses is their ability to undergo discontinuous transcription wherein individual open reading frames fuse with the 5'-UTR leader sequence during negative-strand RNA synthesis (5). As such all viral protein coding genes use the same 5'-UTR for translation (6). Using in vitro reporter assays, we demonstrate that the SARS-CoV-2 5'-UTR efficiently initiates protein translation despite its predicted structural complexity. Through a combination of bioinformatic and biochemical assays, we demonstrate that a single METTL3-dependent m6A methylation event in SARS-CoV-2 5'-UTR regulates the rate of translation initiation. We show that m6A likely exerts this effect by destabilizing secondary structure in the 5'-UTR, thereby facilitating access to the ribosomal pre-initiation complex. This discovery opens new avenues for novel therapeutic strategies aimed at controlling the ability of SARS-CoV-2 to replicate in host cells.

2.
Mol Psychiatry ; 25(7): 1364-1381, 2020 07.
Article in English | MEDLINE | ID: mdl-32439846

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed drugs for mood disorders. While the mechanism of SSRI action is still unknown, SSRIs are thought to exert therapeutic effects by elevating extracellular serotonin levels in the brain, and remodel the structural and functional alterations dysregulated during depression. To determine their precise mode of action, we tested whether such neuroadaptive processes are modulated by regulation of specific gene expression programs. Here we identify a transcriptional program regulated by activator protein-1 (AP-1) complex, formed by c-Fos and c-Jun that is selectively activated prior to the onset of the chronic SSRI response. The AP-1 transcriptional program modulates the expression of key neuronal remodeling genes, including S100a10 (p11), linking neuronal plasticity to the antidepressant response. We find that AP-1 function is required for the antidepressant effect in vivo. Furthermore, we demonstrate how neurochemical pathways of BDNF and FGF2, through the MAPK, PI3K, and JNK cascades, regulate AP-1 function to mediate the beneficial effects of the antidepressant response. Here we put forth a sequential molecular network to track the antidepressant response and provide a new avenue that could be used to accelerate or potentiate antidepressant responses by triggering neuroplasticity.


Subject(s)
Annexin A2/metabolism , Antidepressive Agents/pharmacology , S100 Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Transcription Factor AP-1/metabolism , Animals , Annexin A2/genetics , Brain/drug effects , Brain/metabolism , Cell Line , Humans , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Neuronal Plasticity/drug effects , Neuronal Plasticity/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/genetics , Rats , S100 Proteins/genetics , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...