Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 353: 120203, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38325285

ABSTRACT

Biofiltration utilizes natural mechanisms including biodegradation and biotransformation along with other physical processes for the removal of organic micropollutants (OMPs) such as pharmaceuticals, personal care products, pesticides and industrial compounds found in (waste)water. In this systematic review, a total of 120 biofiltration studies from 25 countries were analyzed, considering various biofilter configurations, source water types, biofilter media and scales of operation. The study also provides a bibliometric analysis to identify the emerging research trends in the field. The results show that granular activated carbon (GAC) either alone or in combination with another biofiltration media can remove a broad range of OMPs efficiently. The impact of pre-oxidation on biofilter performance was investigated, revealing that pre-oxidation significantly improved OMP removal and reduced the empty bed contact time (EBCT) needed to achieve a consistently high OMP. Biofiltration with pre-oxidation had median removals ranging between 65% and >90% for various OMPs at 10-45 min EBCT with data variability drastically reducing beyond 20 min EBCT. Biofiltration without pre-oxidation had lower median removals with greater variability. The results demonstrate that pre-oxidation greatly enhances the removal of adsorptive and poorly biodegradable OMPs, while its impact on other OMPs varies. Only 19% of studies we reviewed included toxicity testing of treated effluent, and even fewer measured transformation products. Several studies have previously reported an increase in effluent toxicity because of oxidation, although it was successfully abated by subsequent biofiltration in most cases. Therefore, the efficacy of biofiltration treatment should be assessed by integrating toxicity testing into the assessment of overall removal.

3.
Environ Res ; 236(Pt 2): 116784, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37517498

ABSTRACT

Water scarcity is increasing worldwide due to rising population which is creating opportunities to unlock alternative green desalination techniques for seawater, such as biodesalination. Therefore, this study presents the utilization of the Phormidium keutzingianum strain in an attached growth-packed bed reactor to treat seawater in real-time in a continuous-flow stirred tank reactor for biodesalination. Two reactors were designed and developed, in which zeolites were used as the support media for the attached growth. The experiment was conducted in an open outdoor environment with a continuous air flow rate of 3 mL/min and two hydraulic retention times (HRT) of 7 and 15 d. Parameters such as the pH, chloride ion concentration, total organic carbon (TOC), and optical density were monitored regularly. The pH change was not significant in either reactor and remained within the range of 7.25-8.0. Chloride ion removal was the most crucial component of biodesalination efficiency, with d 7 removal efficiencies of approximately 40% and 32% for reactors 1 and 2, respectively. Reactor 1 exhibited a TOC reduction of 36% within the first 10 d at a HRT of 7, and when the HRT was set to 15 d, a TOC removal efficiency of 89% was achieved on d 53. For reactor 2, a TOC removal efficiency of approximately 81% was achieved on d 11 at HRT 7, and it reduced to less than 50% at an HRT of 15. The chloride ion and TOC removal phenomena were similar in both reactors. The optical density (OD) showed low measurement recordings, ranging from 0.005 to 0.01, indicating low cell detachment in the seawater effluent. Therefore, using the attached growth method for the biodesalination of seawater is feasible. Furthermore, biomass harvesting in attached growth systems is easier than that in suspension growth systems.


Subject(s)
Bioreactors , Phormidium , Chlorides , Waste Disposal, Fluid/methods
4.
RSC Adv ; 12(46): 29785-29792, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36321096

ABSTRACT

Biohydrogen (bioH2) is a sustainable energy source that can produce carbon-free energy upon combustion. BioH2 can be generated from microalgae by photolytic and anaerobic digestion (AD) pathways. The AD pathway faces many challenges when scaling up using different bioreactors, particularly the continuous stirred tank reactor (CSTR) and sequential flow batch reactor (SFBR). Therefore, the performance characteristics of SFBR were analysed in this study using Chlorella vulgaris and domestic wastewater activated sludge (WWAS) co-culture. An organic loading rate (OLR) of 4.7 g COD L-1 day-1 was fed to the SFBR with a hydraulic retention time (HRT) of five days in the presence of light under anaerobic conditions. The pH of the medium was maintained at 6 using a pH controller for the incubation period of 15 days. The maximum bioH2 concentrations of 421.1 µmol L-1 and 56.6 µmol L-1 were observed in the exponential and steady-state phases, respectively. The effluent had an unusually high amount of acetate of 16.6 g L-1, which remained high with an average of 11.9 g L-1 during the steady state phase. The amount of bioH2 produced was found to be inadequate but consistent when operating the SFBR with a constant OLR. Because of the limitations in CSTR handling, operating a SFBR by optimizing OLR and HRT might be more feasible in operation for bioH2 yield in upscaling. A logistic function model was also found to be the best fit for the experimental data for the prediction of bioH2 generation using co-culture in the SFBR.

5.
Chemosphere ; 307(Pt 4): 136082, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36028126

ABSTRACT

The biodesalination potential at different levels of salinity of Phormidium keutzingianum (P. keutzingianum) was investigated. A wide range of salinity from brackish to hypersaline water was explored in this study to ensure the adaptability of P. keutzingianum in extreme stress conditions. Brackish to hypersaline salt solutions were tested at selected NaCl concentrations 10, 30, 50, and 70 g.L-1. Chloride, pH, nitrate, and phosphate were the main parameters measured throughout the duration of the experiment. Biomass growth estimation revealed that the studied strain is adaptable to all the salinities inoculated. During the first growth phase (till day 20), chloride ion was removed up to 43.52% and 45.69% in 10 and 30 g.L-1 of salinity, respectively. Fourier transform infrared spectrometry analysis performed on P. keutzingianum showed the presence of active functional groups at all salinity levels, which resulted in biosorption leading to the bioaccumulation process. Samples for scanning electron microscopy (SEM) analysis supported with electron dispersive X-ray spectroscopy analysis (EDS) showed NaCl on samples already on day 0. This ensures the occurrence of the biosorption process. SEM-EDS results on 10th d showed evidence of additional ions deposited on the outer surface of P. keutzingianum. Calcium, magnesium, potassium, sodium, chloride, phosphorus, and iron were indicated in SEM-EDS analysis proving the occurrence of the biomineralization process. These findings confirmed that P. keutzingianum showed biomass production, biosorption, bioaccumulation, and biomineralization in all salinities; hence, the strain affirms the biodesalination process.


Subject(s)
Cyanobacteria , Water , Adsorption , Calcium , Chlorides , Hydrogen-Ion Concentration , Iron , Magnesium , Nitrates , Phormidium , Phosphates , Phosphorus , Potassium , Salt-Tolerant Plants , Sodium , Sodium Chloride , Spectroscopy, Fourier Transform Infrared
6.
J Air Waste Manag Assoc ; 72(6): 602-616, 2022 06.
Article in English | MEDLINE | ID: mdl-35311619

ABSTRACT

Ethanol is a significant source of energy as a biofuel; however, its production using corn involves the generation of harmful emissions from both fermentation tanks and dryers. Scrubbers control the emissions from fermentation tanks, while the emissions from the dryers are controlled by regenerative thermal oxidizers. Potential alternatives to these energy- and water-intensive technologies are biotrickling filters (BTFs). In this study, two BTFs were operated in parallel to treat formaldehyde and methanol emissions in a volumetric ratio of 4:1, one at 25°C (mesophilic), and the other at 60°C (thermophilic). The mesophilic BTF simulated emissions from fermentation tanks, while the thermophilic BTF simulated emissions from dryers. Both beds were operated at an empty bed residence time of ~30 s and influent formaldehyde concentrations of 20, 50, and 100 parts per million per volume (ppmv). Formaldehyde polymerization was reduced in this study by adding NaOH to pH levels of 7.0-7.4 and heating the solution to a temperature of 60°C. BTFs have successfully removed formaldehyde at typical ethanol plants emissions ~21 ppmv. The BTF technology have the potential in replacing the conventional air treatment methods used at ethanol plants.Implications: Currently, ethanol plants remove and treat hazardous air pollutants (HAPs) using wet scrubbers from the fermenter off-gasses and using thermal oxidizers to combust off-gasses. The utilization of biotrickling filters (BTFs) for HAP removal generally and formaldehyde particularly has wide implication in the field of renewable energy. Utilizing BTFs in the 200+ ethanol plants in USA will save cost and reduce water and energy needs significantly. BTFs can reduce an ethanol plant's carbon intensity (CI) by 1 to 3 g CO2/MJ. This can result in roughly $50 million per year in additional revenue in Nebraska for instance.


Subject(s)
Air Pollutants , Filtration , Biodegradation, Environmental , Bioreactors , Ethanol , Filtration/methods , Formaldehyde , Gases , Methanol , Water
7.
Heliyon ; 8(1): e08749, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35146148

ABSTRACT

An artificial neural network (ANN) approach with response surface methodology (RSM) technique has been applied to model and optimize the removal process of Brilliant Green dye by batch electrocoagulation process. A multilayer perceptron (MLP) - ANN model has been trained by four input neurons which represent the reaction time, current density, pH, NaCl concentration, and two output neurons representing the dye removal efficiency (%) and electrical energy consumption (kWh/kg). The optimized hidden layer neurons were obtained based on a minimum mean squared error. The batch electrocoagulation process was optimized using central composite design with RSM once the ANN network was trained and primed to anticipate the output. At optimized condition (electrolysis time 10 min, current density 80 A/m2, initial pH 5 and electrolyte NaCl concentration 0.5 g/L), RSM projected decolorization of 98.83% and electrical energy consumption of 14.99 kWh/kg. This study shows that the removal of brilliant green dye can be successfully carried out by a batch electrocoagulation process. Therefore, the process is successfully trained by ANN and optimized by RSM for similar applications.

8.
J Environ Manage ; 302(Pt A): 113947, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34678537

ABSTRACT

Phormidium keutzingianum performed biodesalination of brackish water (10 g/L). The electrical conductivity (EC) was measured to evaluate the salt concentration over 80 days of cyanobacterial inoculation. Anion concentrations were measured using ion chromatography to estimate salt removal. EC-based measurements showed ∼8-10% removal efficiency in the first 20 days. However, the removal efficiency based on chloride ion concentration showed ∼40% removal in the same time frame. The pH increase was observed with growth of algal biomass. The increasing pH proposes the formation of hydroxyl and carbonate ions. Sulfuric acid was added at day 110 to neutralize them. At pH 4, the EC reduced significantly to about ∼37% confirming the chloride removal. EC should not be used to measure salt reduction as it is an obscure parameter, and therefore, EC is not the best choice to measure salinity removal using algae. Some recently published studies used only EC to estimate biodesalination, and it is anticipated that salt removal is misrepresented in those studies.


Subject(s)
Cyanobacteria , Chlorides , Electric Conductivity , Salinity , Sodium Chloride
10.
J Environ Manage ; 297: 113329, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34333308

ABSTRACT

Using alcohol-based disinfectants is an effective method for preventing the spread of COVID-19. However, non-traditional manufacturers of alcohol-based disinfectants, such as ethanol plants, need to undergo additional treatment to curb their impurities to limits set by the Food and Drug Association (FDA) to produce alcohol-based disinfectants. To transform them to disinfectant-grade alcohol, 17 process streams in a dry-mill ethanol plant were analyzed to determine the quality parameters for acetaldehyde, acetal, propanol, methanol, and water, including chemical oxygen demand, total suspended solids, and nutrients. Results suggest that the process stream generated by the distillation column requires further treatment because the acetaldehyde and acetal concentrations are significantly higher than the impurity limit set by the FDA. The addition of a second distillation column could be a potential method for addressing impurities and it will have minimal influence on hazardous air pollutant generation and water use.


Subject(s)
COVID-19 , Disinfectants , Ethanol , Hand Sanitizers , Disinfectants/standards , Ethanol/standards , Hand Sanitizers/standards , Humans , Pandemics
11.
Water Environ Res ; 93(2): 263-273, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32678918

ABSTRACT

Scenedesmus species, immobilized on alginate gel, was found effective in removing nitrate, atrazine, magnesium, phosphorus, zinc, oxadiazon, and triallate from groundwater in a continuous flow reactor. The laboratory-scale experiments with synthetic groundwater, made of 8.8 mg/L NO3 -N and 90 µg/L atrazine, were performed at a hydraulic retention time of 7 days and the temperatures of 20 and 35°C. The highest uptake of nitrate and atrazine was observed at 20°C (97% and 70%, respectively). When tested in actual groundwater, 92% of nitrate, 100% of magnesium, 99.9% of phosphorus, and 92% of zinc were successfully removed at the end of 29 days' treatment operations. The algal beads removed 100% of oxadiazon and triallate in the first 10 days, but some of the herbicides diffused back into the solution toward the end of the treatment process. PRACTITIONER POINTS: Immobilized algae-alginate beads can remove nitrate, atrazine, oxadiazon, and triallate from groundwater in continuous flow reactor. The uptake rate of nitrate and atrazine is higher in room temperature (20°C). Same algae beads could be reused for herbicide uptake for the average of 10 days. The immobilized system is a natural sustainable alternative that can be used in groundwater pump and treat.


Subject(s)
Atrazine , Groundwater , Herbicides , Scenedesmus , Water Pollutants, Chemical , Nitrates
12.
Sci Total Environ ; 759: 143493, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33190883

ABSTRACT

Wastewater-based epidemiology (WBE) is successful in the detection of the spread of SARS-CoV-2. This review examines the methods used and results of recent studies on the quantification of SARS-CoV-2 in wastewater. WBE becomes essential, especially with virus transmission path uncertainty, limitations on the number of clinical tests that could be conducted, and a relatively long period for infected people to show symptoms. Wastewater surveillance was used to show the effect of lockdown on the virus spread. A WBE framework tailored for SARS-CoV-2 that incorporates lessons learnt from the reviewed studies was developed. Results of the review helped outline challenges facing the detection of SARS-CoV-2 in wastewater samples. A comparison between the various studies with regards to sample concentration and virus quantification was conducted. Five different primers sets were used for qPCR quantification; however, due to limited data availability, there is no consensus on the most sensitive primer. Correlating the slope of the relationship between the number of gene copies vs. the cumulative number of infections normalized to the total population served with the average new cases, suggests that qPCR results could help estimating the number of new infections. The correlation is improved when a lag period was introduced to account for asymptomatic infections. Based on lessons learnt from recent studies, it is recommended that future applications should consider the following: 1) ensuring occupational safety in managing sewage collection and processing, 2) evaluating the effectiveness of greywater disinfection, 3) measuring viral RNA decay due to biological and chemical activities during collection and treatment, 4) assessing the effectiveness of digital PCR, and 5) conducting large scale international studies that follow standardized protocols.


Subject(s)
COVID-19 , SARS-CoV-2 , Communicable Disease Control , Humans , Sewage , Wastewater
13.
Bioresour Technol ; 304: 122953, 2020 May.
Article in English | MEDLINE | ID: mdl-32087541

ABSTRACT

Wastewater with 0.2, 0.4, 0.8, 1.0 mg/L free chlorine was biologically treated using co-immobilized microalgae/bacteria. In contrast, non-pretreated wastewater was treated with beads (control) and blank beads (blank) under the same operating condition. Results showed that NaClO pretreatment removed 8-33% total nitrogen (TN), 31-45% true color and 0.7-2.5 log CFU/mL aerobic-bacteria. At the end of treatment, maximum algal biomass (2,027 dry weight mg/L) was achieved with 0.2 mg/L free chlorine. Bacterial growth in wastewater was decreased by NaClO pretreatment before reaching 7.2-7.7 log CFU/mL on the fifth day. Beads with microorganisms (control) removed 15% more chemical-oxygen-demand (COD), 16% more TN, and 13% more total phosphate (PO43-) than blank. Pretreatment with 0.2 mg/L free chlorine increased TN removal from 75% to 80% while pollutants removal was substantially decreased with 0.4-1.0 mg/L free chlorine. Considering algal biomass growth and pollutants removal, 0.2 mg/L free chlorine pretreatment was recommended for microalgae/bacteria co-immobilized system.


Subject(s)
Microalgae , Wastewater , Bacteria , Biomass , Meat , Nitrogen , Sodium Hypochlorite
14.
Sci Total Environ ; 609: 1616-1626, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28810513

ABSTRACT

Natural organic matter (NOM) affects the stability and transport of nanoparticles (NPs) in natural waters by modifying their physiochemical properties. Source location, and seasonal variations, influence their molecular, physical and electrical charge properties. To understand the variations of NOM on the mobilization of NPs, large volumes of water were collected from the Ohio River (OR) over winter and summer seasons and dissolved NOMs were concentrated. The chemical and structural differences of these NOMs were compared with the Suwannee River humic acid (SRHA) SRHA using 1H and 13C nuclear magnetic resonance spectroscopy, and Fourier transforms infrared (FTIR) spectroscopy. Thermal analysis and FTIR confirmed that differences in composition, structure, and functional groups are a result of SRHA fractionation compared to whole molecule OR-NOM. The influence of OR-NOMs on the surface charge of CeO2 NPs and the effects on the transport and retention in a three-phase (deposition-rinse-re-entrainment) sand-packed columns were investigated at CeO2 NPs initial concertation of 10ppm, pH6.8, increasing ionic strength (3, 5, and 10mM), retention time of 1min, and increasing NOM concentration (1, 5, and 10ppm). The summer OR-NOM showed higher stabilization and mobilization effect on the CeO2 than the winter NOM; while their effect was very different form the SRHA. The stabilization of NPs is attributed to both electrostatic and steric effects. The differences in the chemical structure of the complex and heterogeneous NOMs showed disparate reactivity and direct impact on CeO2-NPs stability. Using SRHA to study the effect of NOM for drinking water related assessment does not sufficiently represent the natural conditions of the environment.

15.
Bioresour Technol ; 161: 109-17, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24690581

ABSTRACT

This study focuses on the interaction of ceria nanoparticles (CeO2-NPs) with Pseudomonas fluorescens and Mycobacterium smegmatis biofilms. Confocal laser microscopy and transmission electron microscopy determined the distribution of NPs in the complex structures of biofilm at molecular levels. Visual data showed that most of the adsorption takes place on the bacterial cell walls and spores. The interaction of nanoparticles (NPs) with biofilms reached equilibrium after the initial high adsorption rate regardless of biofilm heterogeneity and different nanoparticle concentrations in the bulk liquid. Physical processes may dominate this sorption phenomenon. Pseudo first order sorption kinetics was used to estimate adsorption and desorption rate of CeO2-NPs onto biofilms. When biofilms got exposed to CeO2-NPs, a self-protecting mechanism was observed. Cells moved away from the bulk solution in the biofilm matrix, and portions of biofilm outer layer were detached, hence releasing some CeO2-NPs back to the bulk phase.


Subject(s)
Biofilms , Cerium/chemistry , Models, Chemical , Mycobacterium smegmatis/physiology , Nanoparticles/chemistry , Pseudomonas fluorescens/physiology , Adsorption , Kinetics
16.
Water Res ; 47(17): 6457-66, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24050685

ABSTRACT

This article characterizes, experimentally and theoretically, the transport and retention of engineered nanoparticles (NP) through sand filters at drinking water treatment plants (DWTPs) under realistic conditions. The transport of four commonly used NPs (ZnO, CeO2, TiO2, and Ag, with bare surfaces and coating agents) through filter beds filled with sands from either acid washed and calcined, freshly acquired filter media, and used filter media from active filter media, were investigated. The study was conducted using water obtained upstream of the sand filter at DWTP. The results have shown that capping agents have a determinant importance in the colloidal stability and transport of NPs through the different filter media. The presence of the biofilm in used filter media increased adsorption of NPs but its effects in retaining capped NPs was less significant. The data was used to build a mathematical model based on the advection-dispersion equation. The model was used to simulate the performance of a scale-up sand filter and the effects on filtration cycle of traditional sand filtration system used in DWTPs.


Subject(s)
Biofilms , Drinking Water/chemistry , Filtration/instrumentation , Motion , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Kinetics , Light , Models, Theoretical , Nanoparticles/ultrastructure , Particle Size , Porosity , Scattering, Radiation , Static Electricity
17.
Chemosphere ; 82(4): 521-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21074825

ABSTRACT

One of the main challenges that face successful biofiltration is the erratic loading pattern and long starvation periods. However, such patterns are common in practical applications. In order to provide long-term stable operation of a biofilter under these conditions, a cyclic adsorption/desorption beds system with flow switching was installed prior to a biofilter. Different square waves of a mixture containing n-hexane and benzene at a 2:1 ratio were applied to the cyclic adsorption/desorption beds and then fed to a biofilter. The performance of this integrated system was compared to a biofilter unit receiving the same feed of both VOCs. The cyclic adsorption/desorption beds unit successfully achieved its goal of stabilizing erratic loading even with very sharp peaks at the influent concentration equalizing influent concentrations ranging from 10-470 ppmv for n-hexane to 30-1410 ppmv for benzene. The study included different peak concentrations with durations ranging from 6 to 20 min. The cyclic beds buffered the fluctuating influent load and the followed biofilter had all the time a continuous stable flow. Another advantage achieved by the cyclic adsorption/desorption beds was the uninterrupted feed to the biofilter even during the starvation where there was no influent in the feed. The results of the integrated system with regard to removal efficiency and kinetics are comparable to published results with continuous feed studies at the same loading rates. The removal efficiency for benzene had a minimum of 85% while for n-hexane ranged from 50% to 77% according to the loading rate. The control unit showed very erratic performance highlighting the benefit of the utilization of the cyclic adsorption/desorption beds. The biofilter was more adaptable to concentration changes in benzene than n-hexane.


Subject(s)
Air Pollutants/metabolism , Benzene/metabolism , Filtration/methods , Hexanes/metabolism , Volatile Organic Compounds/metabolism , Adsorption , Air Pollutants/chemistry , Benzene/chemistry , Biodegradation, Environmental , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Hexanes/chemistry , Kinetics , Volatile Organic Compounds/chemistry
18.
J Hazard Mater ; 184(1-3): 345-349, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20869171

ABSTRACT

Trickle Bed Air Biofilters (TBABs) are considered to be economical and environmental-friendly for treatment of Volatile Organic Compounds (VOCs). Hydrophilic VOCs are easily degradable while hydrophobic ones pose a great challenge for adequate treatment due to the transfer of the VOC to the liquid phase. In this study the utilization of acidic pH is proposed for the treatment of benzene vapors. The acidic pH would encourage the growth of fungi as the main consortium. A TBAB operated at pH 4 was used for the treatment of an air stream contaminated with benzene under different loading rates ranging from 37 to 76.8 g/(m(3)h). The purpose of introducing fungi was to compare the performance with traditional TBAB operating under neutral pH in order to assess the biodegradation of benzene in mixtures with other compounds favoring acidic conditions. The experimental plan was designed to assess long-term performance with emphasis based on different benzene loading rates, removal efficiency with TBAB depth, and carbon mass balance closure. At benzene loading rate of 64 g/(m(3)h), the removal efficiency was 90%. At the maximum loading rate of 77 g/(m(3)h), the removal efficiency was 75% marking the maximum elimination capacity for the TBAB at 58.8 g/(m(3)h). Operating at acidic pH successfully supported the degradation of benzene in TBAB. It is worthwhile to note that benzene appears in mixtures with n-hexane and toluene, which are reported to be better degraded under such conditions.


Subject(s)
Benzene/isolation & purification , Filtration/methods , Acids , Hydrogen-Ion Concentration
19.
Chemosphere ; 75(10): 1315-21, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19345397

ABSTRACT

Trickle bed air biofilters (TBABs) are suitable for treatment of relatively high volumes of volatile organic compounds due to their controlled environment. A laboratory-scale TBAB was used for the treatment of an air stream contaminated with benzene under different loading rates (LRs) ranging from 7.2 to 76.8 gm(-3)h(-1). The TBAB was operated at pH 7 and 25 degrees C. Consistent long-term performance of the benzene TBAB depends on various factors one of which is the excess amount of biomass accumulated within the bed. Three experimental strategies for biomass control were employed in the study: weekly backwashing for 1h, starvation (no benzene feed for a period of 2d/week) and stagnation (no benzene, air and nutrient flow for a period of 2d/week). The experimental plan was designed to investigate the long-term performance of the TBAB with emphasis on the empty bed resident time (EBRT), different benzene LRs, removal efficiency with TBAB depth, volatile suspended solids and carbon mass balance closure. For benzene loading up to 34.1gm(-3)h(-1), removal efficiency consistently over 98% was achieved. At the maximum LR 76.8 gm(-3)h(-1) the removal efficiency was still above 80% by utilizing stagnation strategy for 2d and gas flow switching once per week as means of biomass control. Backwashing once per week provided less efficient performance as compared to stagnation while starvation showed the worst performance. EBRT at 120 s provided the best performance while EBRT at 90 s showed slightly lower performance.


Subject(s)
Air Pollutants/metabolism , Benzene/metabolism , Filtration/methods , Biodegradation, Environmental , Biomass , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...