Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Health Informatics J ; 28(4): 14604582221135420, 2022.
Article in English | MEDLINE | ID: mdl-36374584

ABSTRACT

The purpose of the healthcare Information System (HIS) is to replace the conventional method of data gathering and organization in hospitals into a modern method of systematic data collection, maintenance and dissemination. There has been an unprecedented rise in the malware and cyber-attacks on HIS recently. Cyber-attacks have become a major crisis for the healthcare industry. To address this scenario, the present paper conducts a study on the security factors integral to the healthcare information system and conducts the performance analysis of these factors. For this intent, the study has employed the Fuzzy Analytic Hierarchy Process (F.AHP) integrated with Technique Order Preference by Similarity to Ideal Solution (TOPSIS) integrated framework for evaluating the performance of each factor. Thereafter, the factors that play a vital role in healthcare data security breaches have been prioritized as per their security weights. Furthermore, the validity of the results obtained by the stated methodology has been established by conducting the sensitivity analysis and comparison of results with the other methods by using the same data set. Based on results thus obtained, the access control and software security have been identified as the most promising security factors.


Subject(s)
Computer Security , Software , Humans , Delivery of Health Care , Information Systems
2.
Soft comput ; 26(20): 11077-11089, 2022.
Article in English | MEDLINE | ID: mdl-35966348

ABSTRACT

The COVID-19 infection, which began in December 2019, has claimed many lives and impacted all aspects of human life. With time, COVID-19 was identified as a pandemic outbreak by the World Health Organization (WHO), putting massive pressure on global health. During this ongoing pandemic, the exponential growth of social media platforms has provided valuable resources for distributing information, as well as a source for self-reported disease symptoms in public discourse. Therefore, there is an urgent need for effective approaches to detect self-reported symptoms or cases in social media content. In this study, we scrapped public discourse on COVID-19 symptoms in Twitter content. For this, we developed a huge dataset of COVID-19 self-reported symptoms and gold-annotated the tweets into four categories: confirmed, death, suspected, and recovered. Then, we use a machine and deep machine learning models, each with its own set of features, such as feature representation. Furthermore, the experimentations were achieved with recurrent neural networks (RNNs) variants and compared their performance with traditional machine learning algorithms. Experimental results report that optimizing the area under the curve (AUC) enhances model performance, and the long short-term memory (LSTM) has the highest accuracy in detecting COVID-19 symptoms in real-time public messaging. Thus, the LSTM classifier in the proposed pipeline achieves a classification accuracy of 90.7%, outperforming existing state-of-the-art algorithms for multi-class classification.

3.
Comput Intell Neurosci ; 2022: 7348488, 2022.
Article in English | MEDLINE | ID: mdl-35845910

ABSTRACT

Numerous forms of disasters and vandalism can occur in transmission lines, which makes them vulnerable. As a result, the transmission pipes must be protected by a reliable monitoring system. When a wireless sensor network is built from disparate devices that are positioned at varying distances from one another, it can be used to monitor physical and environmental conditions in the surrounding environment. In addition to the built-in sensor on the exterior of a pipeline and sensors positioned to support bridge structures, wireless sensor networks have a range of other applications. Other uses include robotics, healthcare, environmental monitoring, and a variety of other areas of technology. It is feasible to use wireless sensor networks to monitor temperature and pressure, as well as leak detection and transmission line sabotage, among other applications. There are several different sorts of attacks that can be launched against wireless sensor networks. When it comes to information security in wireless sensor networks, cryptographic approaches play a critical role in ensuring the integrity of the data. Different types of cryptographic algorithms are now available for use in order to maintain network security. Specific difficulties must be addressed, though, and these are as follows: To strengthen the power of these algorithms, a unique hybrid encryption approach for monitoring energy transmission lines and increasing the security of wireless sensor networks is created in this study. While wireless sensor networks are being used to monitor transmission pipelines, the proposed hybrid encryption method ensures that data is transferred securely and promptly. The proposed method must follow three cryptographic principles: integrity, secrecy, and authenticity. All of the subtleties and underlying principles of the algorithm are explained in detail so that the algorithm can be put into action immediately after it is introduced.


Subject(s)
Computer Communication Networks , Wireless Technology , Algorithms , Computer Security , Electrocardiography , Machine Learning
4.
Comput Intell Neurosci ; 2022: 6671234, 2022.
Article in English | MEDLINE | ID: mdl-35571726

ABSTRACT

Purpose: The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance. Methods: As the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages. Results: This system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques. Conclusion: The complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Computers , Humans , Image Processing, Computer-Assisted/methods , Intracranial Hemorrhages/diagnostic imaging , Tomography, X-Ray Computed/methods
5.
Sensors (Basel) ; 22(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35458866

ABSTRACT

For analytical approach-based word recognition techniques, the task of segmenting the word into individual characters is a big challenge, specifically for cursive handwriting. For this, a holistic approach can be a better option, wherein the entire word is passed to an appropriate recognizer. Gurumukhi script is a complex script for which a holistic approach can be proposed for offline handwritten word recognition. In this paper, the authors propose a Convolutional Neural Network-based architecture for recognition of the Gurumukhi month names. The architecture is designed with five convolutional layers and three pooling layers. The authors also prepared a dataset of 24,000 images, each with a size of 50 × 50. The dataset was collected from 500 distinct writers of different age groups and professions. The proposed method achieved training and validation accuracies of about 97.03% and 99.50%, respectively for the proposed dataset.


Subject(s)
Language , Neural Networks, Computer , Handwriting
6.
Biomed Res Int ; 2022: 7348344, 2022.
Article in English | MEDLINE | ID: mdl-35252454

ABSTRACT

This work delivers a novel technique to detect brain tumor with the help of enhanced watershed modeling integrated with a modified ResNet50 architecture. It also involves stochastic approaches to help in developing enhanced watershed modeling. Cancer diseases, primarily the brain tumor, have been exponentially raised which has alarmed researchers from academia and industry. Nowadays, researchers need to attain a more effective, accurate, and trustworthy brain tumor tissue detection and classification approach. Different from traditional machine learning methods that are just targeting to enhance classification efficiency, this work highlights the process to extract several deep features to diagnose brain tumor effectively. This paper explains the modeling of a novel technique by integrating the modified ResNet50 with the Enhanced Watershed Segmentation (EWS) algorithm for brain tumor classification and deep feature extraction. The proposed model uses the ResNet50 model with a modified layer architecture including five convolutional layers and three fully connected layers. The proposed method can retain the optimal computational efficiency with high-dimensional deep features. This work obtains a comprised feature set by retrieving the diverse deep features from the ResNet50 deep learning model and feeds them as input to the classifier. The good performing capability of the proposed model is achieved by using hybrid features of ResNet50. The brain tumor tissue images were extracted by the suggested hybrid deep feature-based modified ResNet50 model and the EWS-based modified ResNet50 model with a high classification accuracy of 92% and 90%, respectively.


Subject(s)
Brain Neoplasms , Neural Networks, Computer , Algorithms , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Humans , Machine Learning
7.
Comput Intell Neurosci ; 2022: 1820777, 2022.
Article in English | MEDLINE | ID: mdl-35345799

ABSTRACT

Breast cancer is a dangerous disease with a high morbidity and mortality rate. One of the most important aspects in breast cancer treatment is getting an accurate diagnosis. Machine-learning (ML) and deep learning techniques can help doctors in making diagnosis decisions. This paper proposed the optimized deep recurrent neural network (RNN) model based on RNN and the Keras-Tuner optimization technique for breast cancer diagnosis. The optimized deep RNN consists of the input layer, five hidden layers, five dropout layers, and the output layer. In each hidden layer, we optimized the number of neurons and rate values of the dropout layer. Three feature-selection methods have been used to select the most important features from the database. Five regular ML models, namely decision tree (DT), support vector machine (SVM), random forest (RF), naive Bayes (NB), and K-nearest neighbor algorithm (KNN) were compared with the optimized deep RNN. The regular ML models and the optimized deep RNN have been applied the selected features. The results showed that the optimized deep RNN with the selected features by univariate has achieved the highest performance for CV and the testing results compared to the other models.


Subject(s)
Breast Neoplasms , Deep Learning , Bayes Theorem , Breast Neoplasms/diagnosis , Female , Humans , Machine Learning , Support Vector Machine
8.
Comput Intell Neurosci ; 2022: 8467349, 2022.
Article in English | MEDLINE | ID: mdl-35211168

ABSTRACT

The automated identification of toxicity in texts is a crucial area in text analysis since the social media world is replete with unfiltered content that ranges from mildly abusive to downright hateful. Researchers have found an unintended bias and unfairness caused by training datasets, which caused an inaccurate classification of toxic words in context. In this paper, several approaches for locating toxicity in texts are assessed and presented aiming to enhance the overall quality of text classification. General unsupervised methods were used depending on the state-of-art models and external embeddings to improve the accuracy while relieving bias and enhancing F1-score. Suggested approaches used a combination of long short-term memory (LSTM) deep learning model with Glove word embeddings and LSTM with word embeddings generated by the Bidirectional Encoder Representations from Transformers (BERT), respectively. These models were trained and tested on large secondary qualitative data containing a large number of comments classified as toxic or not. Results found that acceptable accuracy of 94% and an F1-score of 0.89 were achieved using LSTM with BERT word embeddings in the binary classification of comments (toxic and nontoxic). A combination of LSTM and BERT performed better than both LSTM unaccompanied and LSTM with Glove word embedding. This paper tries to solve the problem of classifying comments with high accuracy by pertaining models with larger corpora of text (high-quality word embedding) rather than the training data solely.


Subject(s)
Social Media , Data Accuracy , Data Collection , Humans , Machine Learning , Natural Language Processing
9.
PeerJ Comput Sci ; 7: e755, 2021.
Article in English | MEDLINE | ID: mdl-34805508

ABSTRACT

The proposed research motivates the 6G cellular networking for the Internet of Everything's (IoE) usage empowerment that is currently not compatible with 5G. For 6G, more innovative technological resources are required to be handled by Mobile Edge Computing (MEC). Although the demand for change in service from different sectors, the increase in IoE, the limitation of available computing resources of MEC, and intelligent resource solutions are getting much more significant. This research used IScaler, an effective model for intelligent service placement solutions and resource scaling. IScaler is considered to be made for MEC in Deep Reinforcement Learning (DRL). The paper has considered several requirements for making service placement decisions. The research also highlights several challenges geared by architectonics that submerge an Intelligent Scaling and Placement module.

10.
Comput Intell Neurosci ; 2021: 6628889, 2021.
Article in English | MEDLINE | ID: mdl-34054940

ABSTRACT

Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique used to search for food with the intrinsic manner of bee swarming. PSO is widely used to solve the diverse problems of optimization. Initialization of population is a critical factor in the PSO algorithm, which considerably influences the diversity and convergence during the process of PSO. Quasirandom sequences are useful for initializing the population to improve the diversity and convergence, rather than applying the random distribution for initialization. The performance of PSO is expanded in this paper to make it appropriate for the optimization problem by introducing a new initialization technique named WELL with the help of low-discrepancy sequence. To solve the optimization problems in large-dimensional search spaces, the proposed solution is termed as WE-PSO. The suggested solution has been verified on fifteen well-known unimodal and multimodal benchmark test problems extensively used in the literature, Moreover, the performance of WE-PSO is compared with the standard PSO and two other initialization approaches Sobol-based PSO (SO-PSO) and Halton-based PSO (H-PSO). The findings indicate that WE-PSO is better than the standard multimodal problem-solving techniques. The results validate the efficacy and effectiveness of our approach. In comparison, the proposed approach is used for artificial neural network (ANN) learning and contrasted to the standard backpropagation algorithm, standard PSO, H-PSO, and SO-PSO, respectively. The results of our technique has a higher accuracy score and outperforms traditional methods. Also, the outcome of our work presents an insight on how the proposed initialization technique has a high effect on the quality of cost function, integration, and diversity aspects.


Subject(s)
Algorithms , Neural Networks, Computer , Animals , Bees , Benchmarking , Learning , Problem Solving
11.
J Healthc Eng ; 2021: 5541255, 2021.
Article in English | MEDLINE | ID: mdl-33680414

ABSTRACT

A high-accuracy gait data prediction model can be used to design prosthesis and orthosis for people having amputations or ailments of the lower limb. The objective of this study is to observe the gait data of different subjects and design a neural network to predict future gait angles for fixed speeds. The data were recorded via a Biometrics goniometer, while the subjects were walking on a treadmill for 20 seconds each at 2.4 kmph, 3.6 kmph, and 5.4 kmph. The data were then imported into Matlab, filtered to remove movement artifacts, and then used to design a neural network with 60% data for training, 20% for validation, and remaining 20% for testing using the LevenbergMarquardt method. The mean-squared error for all the cases was in the order of 10-3 or lower confirming that our method is correct. For further comparison, we randomly tested the neural network function with untrained data and compared the expected output with actual output of the neural network function using Pearson's correlation coefficient and correlation plots. We conclude that our framework can be successfully used to design prosthesis and orthosis for lower limb. It can also be used to validate gait data and compare it to expected data in rehabilitation engineering.


Subject(s)
Artificial Limbs , Gait Analysis , Biomechanical Phenomena , Gait , Humans , Walking
12.
Diagnostics (Basel) ; 12(1)2021 Dec 26.
Article in English | MEDLINE | ID: mdl-35054210

ABSTRACT

In medical imaging, the detection and classification of stomach diseases are challenging due to the resemblance of different symptoms, image contrast, and complex background. Computer-aided diagnosis (CAD) plays a vital role in the medical imaging field, allowing accurate results to be obtained in minimal time. This article proposes a new hybrid method to detect and classify stomach diseases using endoscopy videos. The proposed methodology comprises seven significant steps: data acquisition, preprocessing of data, transfer learning of deep models, feature extraction, feature selection, hybridization, and classification. We selected two different CNN models (VGG19 and Alexnet) to extract features. We applied transfer learning techniques before using them as feature extractors. We used a genetic algorithm (GA) in feature selection, due to its adaptive nature. We fused selected features of both models using a serial-based approach. Finally, the best features were provided to multiple machine learning classifiers for detection and classification. The proposed approach was evaluated on a personally collected dataset of five classes, including gastritis, ulcer, esophagitis, bleeding, and healthy. We observed that the proposed technique performed superbly on Cubic SVM with 99.8% accuracy. For the authenticity of the proposed technique, we considered these statistical measures: classification accuracy, recall, precision, False Negative Rate (FNR), Area Under the Curve (AUC), and time. In addition, we provided a fair state-of-the-art comparison of our proposed technique with existing techniques that proves its worthiness.

13.
PeerJ Comput Sci ; 7: e805, 2021.
Article in English | MEDLINE | ID: mdl-35036531

ABSTRACT

Breast cancer is one of the leading causes of death in women worldwide-the rapid increase in breast cancer has brought about more accessible diagnosis resources. The ultrasonic breast cancer modality for diagnosis is relatively cost-effective and valuable. Lesion isolation in ultrasonic images is a challenging task due to its robustness and intensity similarity. Accurate detection of breast lesions using ultrasonic breast cancer images can reduce death rates. In this research, a quantization-assisted U-Net approach for segmentation of breast lesions is proposed. It contains two step for segmentation: (1) U-Net and (2) quantization. The quantization assists to U-Net-based segmentation in order to isolate exact lesion areas from sonography images. The Independent Component Analysis (ICA) method then uses the isolated lesions to extract features and are then fused with deep automatic features. Public ultrasonic-modality-based datasets such as the Breast Ultrasound Images Dataset (BUSI) and the Open Access Database of Raw Ultrasonic Signals (OASBUD) are used for evaluation comparison. The OASBUD data extracted the same features. However, classification was done after feature regularization using the lasso method. The obtained results allow us to propose a computer-aided design (CAD) system for breast cancer identification using ultrasonic modalities.

14.
J Healthc Eng ; 2020: 8824907, 2020.
Article in English | MEDLINE | ID: mdl-33354309

ABSTRACT

There is a need to develop an effective data preservation scheme with minimal information loss when the patient's data are shared in public interest for different research activities. Prior studies have devised different approaches for data preservation in healthcare domains; however, there is still room for improvement in the design of an elegant data preservation approach. With that motivation behind, this study has proposed a medical healthcare-IoTs-based infrastructure with restricted access. The infrastructure comprises two algorithms. The first algorithm protects the sensitivity information of a patient with quantifying minimum information loss during the anonymization process. The algorithm has also designed the access polices comprising the public access, doctor access, and the nurse access, to access the sensitivity information of a patient based on the clustering concept. The second suggested algorithm is K-anonymity privacy preservation based on local coding, which is based on cell suppression. This algorithm utilizes a mapping method to classify the data into different regions in such a manner that the data of the same group are placed in the same region. The benefit of using local coding is to restrict third-party users, such as doctors and nurses, when trying to insert incorrect values in order to access real patient data. Efficiency of the proposed algorithm is evaluated against the state-of-the-art algorithm by performing extensive simulations. Simulation results demonstrate benefits of the proposed algorithms in terms of efficient cluster formation in minimum time, minimum information loss, and execution time for data dissemination.


Subject(s)
Confidentiality , Privacy , Algorithms , Cluster Analysis , Delivery of Health Care , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...