Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 554: 554-564, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31326787

ABSTRACT

HYPOTHESIS: For a wide range of subsurface engineering processes, such as geological carbon sequestration and enhanced oil recovery, it is critical to understand multiphase flow at a fundamental level. To this end, geomaterial microfluidic devices provide visual data that can be quantified to explain the physics of multiphase flow at the length scale of individual pores in realistic rock structures. For surfactant enhanced oil recovery, it is the underlying geometrical states of the capillary trapped oil that dictates the recovery process and the degree to which oil is recovered through either mobilization or solubilization during in situ emulsification. EXPERIMENTS: A novel geomaterial microfluidic device is fabricated and its integrity is checked using light microscopy and X-ray micro-computed tomography (µ-CT) imaging. Subsequently, alkaline surfactant (AS) flooding of an oil saturated device is studied for enhanced recovery. The recovery process is analyzed by collecting 2D radiographic projections of the device during water flooding and in situ emulsification. 3D µ-CT images are also collected to quantify the geometrical states of the fluids after each flooding sequence. FINDINGS: Our study reveals the processes of oil cluster mobilization and solubilization in porous media. After water flooding there are numerous oil clusters that are relatively large, extending over multiple pores, forming various loop-like structures. These clusters are mobile under AS flooding accounting for 75% of the recovered oil. The less mobile smaller clusters, isolated to single pores, forming no loop-like structures are immobile. These clusters are solubilized during AS flooding accounting for 25% of the recovered oil. The mobilized clusters coalesce forming an oil bank prior to total solubilization. The remaining oil clusters after AS flooding are highly non-wetting, as indicated by contact angle measurements and would only be recoverable after further solubilization.

2.
Sci Rep ; 8(1): 15518, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30341346

ABSTRACT

Fluid flow in porous rocks is commonly capillary driven and thus, dependent on the surface characteristics of rock grains and in particular the connectivity of corners and crevices in which fluids reside. Traditional microfluidic fabrication techniques do not provide a connected pathway of crevices that are essential to mimic multiphase flow in rocks. Here, geo-material microfluidic devices with connected pathways of corners and crevices were created by functionalising Polydimethylsiloxane (PDMS) with rock minerals. A novel fabrication process that provides attachment of rock minerals onto PDMS was demonstrated. The geo-material microfluidic devices were compared to carbonate and sandstone rocks by using energy dispersive X-ray spectroscopy, scanning electron microscopy (SEM), contact angle measurements, and a surface profilometer. Based on SEM coupled with energy-dispersive X-ray spectrometry (SEM-EDS) analyses, roughness measurements, contact angle, wettability, and roughness were comparable to real rocks. In addition, semivariograms showed that mineral deposition across the different geo-material devices was nearly isotropic. Lastly, important multiphase flow phenomena, such as snap-off and corner flow mechanisms, equivalent to those occurring in reservoir rocks have been visualised. The presented approach can be used to visualise rock-fluid interactions that are relevant to subsurface engineering applications, such as hydrocarbon recovery and CO2 sequestration.

SELECTION OF CITATIONS
SEARCH DETAIL
...