Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Life (Basel) ; 12(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36295074

ABSTRACT

Polyphenols are the secondary metabolites synthesized by the plants as a part of defense machinery. Owing to their antioxidant, anti-inflammatory, anticancerous, antineoplastic, and immunomodulatory effects, natural polyphenols have been used for a long time to prevent and treat a variety of diseases. As a result, these phytochemicals may be able to act as therapeutic agents in treating cancer and cardiovascular and neurological disorders. The limited bioavailability of polyphenolic molecules is one issue with their utilization. For the purpose of increasing the bioavailability of these chemicals, many formulation forms have been developed, with nanonization standing out among them. The present review outlines the biological potential of nanoformulated plant polyphenolic compounds. It also summarizes the employability of various polyphenols as nanoformulations for cancer and neurological and cardiovascular disease treatment. Nanoencapsulated polyphenols, singular or in combinations, effective both in vitro and in vivo, need more investigation.

2.
J King Saud Univ Sci ; 34(5): 102124, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35663348

ABSTRACT

Objectives: Here, we prepared a liposome-based vaccine formulation containing Middle East Respiratory Syndrome Coronavirus papain-like protease (MERS-CoV-PLpro). Methods: A persistent leukopenic condition was induced in mice by injecting cyclophosphamide (CYP) three days before each dose of immunization. Mice were immunized on days 0, 14 and 21 with α-GalCer-bearing MERS-CoV PLpro-encapsulated DPPC-liposomes (α-GalCer-MERS-PLpro-liposomes or MERS-CoV PLpo-encapsulated DPPC-liposomes (MERS-PLpro-liposomes), whereas the antigen emulsified in Alum (MERS-PLpro-Alum) was taken as a control. On day 26, the blood was taken from the immunized mice to analyze IgG titer, whereas the splenocytes were used to analyze the lymphocyte proliferation and the level of cytokines. In order to assess the memory immune response, mice were given a booster dose after 150 days of the last immunization. Results: The higher levels of MERS-CoV-PLpro-specific antibody titer, IgG2a and lymphocyte proliferation were noticed in mice immunized with α-GalCer-MERS-PLpro-liposomes. Besides, the splenocytes from mice immunized with α-GalCer-MERS-PLpro-liposomes produced larger amounts of IFN-γ as compared to the splenocytes from MERS-PLpro-liposomes or MERS- PLpro-Alum immunized mice. Importantly, an efficient antigen-specific memory immune response was observed in α-GalCer-MERS-PLpro-liposomes immunized mice. Conclusions: These findings suggest that α-GalCer-MERS-PLpro-liposomes may substantiate to be a successful vaccine formulation against MERS-CoV infection, particularly in immunocompromised individuals.

3.
J Drug Target ; 30(8): 884-893, 2022 09.
Article in English | MEDLINE | ID: mdl-35418263

ABSTRACT

Alpha-Galactosylceramide (α-GalCer) effectively activates the natural killer T (NKT) cells to secrete remarkable amounts of Th1 and Th2 cytokines and therefore, acts as a potential immunoadjuvant in vaccine formulation. In the present study, we prepared α-GalCer-bearing or α-GalCer-free liposomes and loaded them with Middle East Respiratory Syndrome Coronavirus papain-like protease (α-GalCer-Lip-MERS-CoV PLpro or Lip-MERS-CoV PLpro). These formulations were injected in mice to investigate the antigen-specific humoral and cell-mediated immune responses. The immunisation with α-GalCer-Lip-MERS-CoV PLpro or Lip-MERS-CoV PLpro did not induce any notable toxicity in immunised mice. The results demonstrated that mice immunised with α-GalCer-Lip-MERS-CoV PLpro showed greater antigen-specific antibody titre, switching of IgG isotyping to IgG2a subclass and higher lymphocyte proliferation. Moreover, the splenocytes from α-GalCer-Lip-MERS-CoV PLpro immunised mice secreted greater levels of IFN-γ, IL-4, IL-2 and IL-12. Interestingly, a booster dose induced stronger memory immune responses in mice previously immunised with α-GalCer-Lip-MERS-CoV PLpro. In summary, α-GalCer-Lip-MERS-CoV PLpro may prove to be a promising vaccine formulation to protect the individuals against MERS-CoV infection.


Subject(s)
Liposomes , Middle East Respiratory Syndrome Coronavirus , Animals , Galactosylceramides , Immunity , Mice
4.
Molecules ; 27(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35056718

ABSTRACT

The advancements in the field of nanotechnology have provided a great platform for the development of effective antiviral vaccines. Liposome-mediated delivery of antigens has been shown to induce the antigen-specific stimulation of the humoral and cell-mediated immune responses. Here, we prepared dried, reconstituted vesicles (DRVs) from DPPC liposomes and used them as the vaccine carrier system for the Middle East respiratory syndrome coronavirus papain-like protease (DRVs-MERS-CoV PLpro). MERS-CoV PLpro emulsified in the Incomplete Freund's Adjuvant (IFA-MERS-CoV PLpro) was used as a control. Immunization of mice with DRVs-MERS-CoV PLpro did not induce any notable toxicity, as revealed by the levels of the serum alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) in the blood of immunized mice. Immunization with DRVs-MERS-CoV PLpro induced greater antigen-specific antibody titer and switching of IgG1 isotyping to IgG2a as compared to immunization with IFA-MERS-CoV PLpro. Moreover, splenocytes from mice immunized with DRVs-MERS-CoV PLpro exhibited greater proliferation in response to antigen stimulation. Moreover, splenocytes from DRVs-MERS-CoV PLpro-immunized mice secreted significantly higher IFN-γ as compared to splenocytes from IFA-MERS-CoV PLpro mice. In summary, DRVs-MERS-CoV PLpro may prove to be an effective prophylactic formulation to prevent MERS-CoV infection.


Subject(s)
Coronavirus Papain-Like Proteases/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Animals , Cell Proliferation , Coronavirus Infections/prevention & control , Female , Immunity, Cellular , Immunity, Humoral , Immunization/methods , Immunoglobulin G/blood , Interferon-gamma/metabolism , Liposomes/administration & dosage , Liposomes/chemistry , Liposomes/immunology , Liposomes/toxicity , Lymphocytes/metabolism , Mice , Viral Vaccines/chemistry , Viral Vaccines/toxicity
5.
Molecules ; 26(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072086

ABSTRACT

Benzopyrene [B(a)P] is a well-recognized environmental carcinogen, which promotes oxidative stress, inflammation, and other metabolic complications. In the current study, the therapeutic effects of thymoquinone (TQ) against B(a)P-induced lung injury in experimental rats were examined. B(a)P used at 50 mg/kg b.w. induced lung injury that was investigated via the evaluation of lipid profile, inflammatory markers, nitric oxide (NO), and malondialdehyde (MDA) levels. B(a)P also led to a decrease in superoxide dismutase (SOD) (34.3 vs. 58.5 U/mg protein), glutathione peroxidase (GPx) (42.4 vs. 72.8 U/mg protein), catalase (CAT) (21.2 vs. 30.5 U/mg protein), and total antioxidant capacity compared to normal animals. Treatment with TQ, used at 50 mg/kg b.w., led to a significant reduction in triglycerides (TG) (196.2 vs. 233.7 mg/dL), total cholesterol (TC) (107.2 vs. 129.3 mg/dL), and inflammatory markers and increased the antioxidant enzyme level in comparison with the group that was administered B(a)P only (p < 0.05). B(a)P administration led to the thickening of lung epithelium, increased inflammatory cell infiltration, damaged lung tissue architecture, and led to accumulation of collagen fibres as studied through haematoxylin and eosin (H&E), Sirius red, and Masson's trichrome staining. Moreover, the recognition of apoptotic nuclei and expression pattern of NF-κB were evaluated through the TUNEL assay and immunohistochemistry, respectively. The histopathological changes were found to be considerably low in the TQ-treated animal group. The TUNEL-positive cells increased significantly in the B(a)P-induced group, whereas the TQ-treated group showed a decreased apoptosis rate. Significantly high cytoplasmic expression of NF-κB in the B(a)P-induced group was seen, and this expression was prominently reduced in the TQ-treated group. Our results suggest that TQ can be used in the protection against benzopyrene-caused lung injury.


Subject(s)
Benzo(a)pyrene/chemistry , Benzoquinones/analysis , Benzoquinones/pharmacology , Inflammation , Lipids/chemistry , Lung Injury/chemically induced , Lung/drug effects , Nigella sativa/metabolism , Nitric Oxide/chemistry , Oxidative Stress , Pulmonary Fibrosis/chemically induced , Animals , Antioxidants/chemistry , Cholesterol/chemistry , DNA Fragmentation , Intercellular Adhesion Molecule-1/biosynthesis , Interleukin-1beta/biosynthesis , Interleukin-6/biosynthesis , Lung/pathology , Male , Pulmonary Fibrosis/physiopathology , Rats , Treatment Outcome , Tumor Necrosis Factor-alpha/biosynthesis
6.
Saudi J Biol Sci ; 28(8): 4560-4568, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33935562

ABSTRACT

The human-to-human transmitted respiratory illness in COVID-19 affected by the pathogenic Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), which appeared in the last of December 2019 in Wuhan, China, and rapidly spread in many countries. Thereon, based on the urgent need for therapeutic molecules, we conducted in silico based docking and simulation molecular interaction studies on repurposing drugs, targeting SARS-CoV-2 spike protein. Further, the best binding energy of doxorubicin interacting with virus spike protein (PDB: 6VYB) was observed to be -6.38 kcal/mol and it was followed by exemestane and gatifloxacin. The molecular simulation dynamics analysis of doxorubicin, Reference Mean Square Deviation (RMSD), Root Mean Square fluctuation (RMSF), Radius of Gyration (Rg), and formation of hydrogen bonds plot interpretation suggested, a significant deviation and fluctuation of Doxorubicin-Spike RBD complex during the whole simulation period. The Rg analysis has stated that the Doxorubicin-Spike RBD complex was stable during 15,000-35,000 ps MDS. The results have suggested that doxorubicin could inhibit the virus spike protein and prevent the access of the SARS-CoV-2 to the host cell. Thus, in-vitro/in-vivo research on these drugs could be advantageous to evaluate significant molecules that control the COVID-19 disease.

7.
Medicina (Kaunas) ; 57(2)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33673004

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic and is posing a serious challenge to mankind. As per the current scenario, there is an urgent need for antiviral that could act as a protective and therapeutic against SARS-CoV-2. Previous studies have shown that SARS-CoV-2 is much similar to the SARS-CoV bat that occurred in 2002-03. Since it is a zoonotic virus, the exact source is still unknown, but it is believed bats may be the primary reservoir of SARS-CoV-2 through which it has been transferred to humans. In this review, we have tried to summarize some of the approaches that could be effective against SARS-CoV-2. Firstly, plants or plant-based products have been effective against different viral diseases, and secondly, plants or plant-based natural products have the minimum adverse effect. We have also highlighted a few vitamins and minerals that could be beneficial against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , Biological Products/therapeutic use , COVID-19 Drug Treatment , Nutrients/therapeutic use , SARS-CoV-2/drug effects , Virus Diseases/drug therapy , Animals , Chiroptera/virology , Humans
8.
Molecules ; 26(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567661

ABSTRACT

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL-1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.


Subject(s)
Ipomoea/metabolism , Nanoparticles/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Biphenyl Compounds/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/metabolism , Free Radical Scavengers/pharmacology , Free Radical Scavengers/toxicity , Green Chemistry Technology , HT29 Cells , Humans , Mutagenicity Tests , Onions/drug effects , Onions/genetics , Picrates/chemistry , Zinc Oxide/metabolism , Zinc Oxide/toxicity
9.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572296

ABSTRACT

The current study demonstrates the synthesis of fatty acids (FAs) capped silver nanoparticles (AgNPs) using aqueous poly-herbal drug Liv52 extract (PLE) as a reducing, dispersing and stabilizing agent. The NPs were characterized by various techniques and used to investigate their potent antibacterial, antibiofilm, antifungal and anticancer activities. GC-MS analysis of PLE shows a total of 37 peaks for a variety of bio-actives compounds. Amongst them, n-hexadecanoic acid (21.95%), linoleic acid (20.45%), oleic acid (18.01%) and stearic acid (13.99%) were found predominately and most likely acted as reducing, stabilizing and encapsulation FAs in LIV-AgNPs formation. FTIR analysis of LIV-AgNPs shows some other functional bio-actives like proteins, sugars and alkenes in the soft PLE corona. The zone of inhibition was 10.0 ± 2.2-18.5 ± 1.0 mm, 10.5 ± 2.5-22.5 ± 1.5 mm and 13.7 ± 1.0-16.5 ± 1.2 against P. aeruginosa, S. aureus and C. albicans, respectively. LIV-AgNPs inhibit biofilm formation in a dose-dependent manner i.e., 54.4% ± 3.1%-10.12% ± 2.3% (S. aureus), 72.7% ± 2.2%-23.3% ± 5.2% (P. aeruginosa) and 85.4% ± 3.3%-25.6% ± 2.2% (C. albicans), and SEM analysis of treated planktonic cells and their biofilm biomass validated the fitness of LIV-AgNPs in future nanoantibiotics. In addition, as prepared FAs rich PLE capped AgNPs have also exhibited significant (p < 0.05 *) antiproliferative activity against cultured HCT-116 cells. Overall, this is a very first demonstration on employment of FAs rich PLE for the synthesis of highly dispersible, stable and uniform sized AgNPs and their antibacterial, antifungal, antibiofilm and anticancer efficacy.

10.
Semin Cancer Biol ; 69: 109-128, 2021 02.
Article in English | MEDLINE | ID: mdl-31891780

ABSTRACT

Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.


Subject(s)
Breast Neoplasms/drug therapy , Drug Delivery Systems , MicroRNAs/genetics , Nanoparticles/administration & dosage , Nanotechnology/methods , Paclitaxel/analogs & derivatives , Peptides/administration & dosage , Receptors, Estrogen/metabolism , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/pathology , Computer Simulation , Disease Management , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Humans , Molecular Docking Simulation , Nanoparticles/chemistry , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Peptides/chemistry
11.
Pharmacol Res ; 164: 105364, 2021 02.
Article in English | MEDLINE | ID: mdl-33285229

ABSTRACT

In the past decades, the branch of complementary and alternative medicine based therapeutics has gained considerable attention worldwide. Pharmacological efficacy of various traditional medicinal plants, their products and/or product derivatives have been explored on an increasing scale. Tanshinone IIA (Tan IIA) is a pharmacologically active lipophilic component of Salvia miltiorrhiza extract. Tan IIA shares a history of high repute in Traditional Chinese Medicine. Reckoning with these, the present review collates the pharmacological properties of Tan IIA with a special emphasis on its therapeutic potential against diverse diseases including cardiovascular diseases, cerebrovascular diseases, cancer, diabetes, obesity and neurogenerative diseases. Further, possible applications of various therapeutic preparations of Tan IIA were discussed with special emphasis on nano-based drug delivery formulations. Considering the tremendous advancement in the field of nanomedicine and the therapeutic potential of Tan IIA, the convergence of these two aspects can be foreseen with great promise in clinical application.


Subject(s)
Abietanes/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antioxidants/administration & dosage , Animals , Drug Delivery Systems , Drug Therapy, Combination , Humans
12.
Int J Nanomedicine ; 15: 8519-8536, 2020.
Article in English | MEDLINE | ID: mdl-33173290

ABSTRACT

PURPOSE: The study aimed to find an effective method for fungal-mediated synthesis of zinc oxide nanoparticles using endophytic fungal extracts and to evaluate the efficiency of synthesized ZnO NPs as antimicrobial and anticancerous agents. METHODS: Zinc oxide nanoparticles (ZnO NPs) were produced from zinc nitrate hexahydrate with fungal filtrate by the combustion method. The spectroscopy and microscopy techniques, such as ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM) with selected area electron diffraction (SAED), were used to characterize the obtained product. Antibacterial activity on Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) samples was tested by broth microplate dilution technique. ZnO NPs antifungal activity was determined against plant pathogenic and regular contaminating fungi using the food-poison method. The anticancerous assay of the synthesized ZnO NPs was also investigated by cell uptake, MTT assay, and apoptosis assay. RESULTS: The fungal synthesized ZnO NPs were pure, mainly hexagonal in shape and size range of 34-55 nm. The biosynthesized ZnO NPs could proficiently inhibit both Gram-positive and Gram-negative bacteria. ZnO NPs synthesized from fungal extract exhibited antifungal activity in a dose-dependent manner with a high percentage of mycelial inhibition. The cell uptake analysis of ZnO NPs suggests that a significant amount of ZnO NPs (1 µg/mL) was internalized without disturbing cancer cells' morphology. As a result, the synthesized ZnO NPs showed significant anticancer activity against cancer cells at 1 µg/mL concentration. CONCLUSION: This fungus-mediated synthesis of ZnO NPs is a simple, eco-friendly, and non-toxic method. Our results show that the synthesized ZnO NPs are an excellent novel antimicrobial and anticancer agent. Further studies are required to understand the mechanism of the antimicrobial, anticancerous action of ZnO NPs and their possible genotoxicity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Ascomycota/metabolism , Metal Nanoparticles/chemistry , Zinc Oxide/metabolism , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ascomycota/isolation & purification , Cell Line, Tumor , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Lamiales/microbiology , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Plant Leaves/microbiology , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , X-Ray Diffraction , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
13.
J Fungi (Basel) ; 6(3)2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32962271

ABSTRACT

The Plant Growth Promoting Fungi (PGPF) is used as a source of biofertilizers due to their production of secondary metabolites and beneficial effects on plants. The present work is focused on the co-cultivation of Trichoderma spp. (T. harzianum (PGT4), T. reesei (PGT5) and T. reesei (PGT13)) and the production of secondary metabolites from mono and co-culture and mycosynthesis of zinc oxide nanoparticles (ZnO NPs), which were characterized by a UV visible spectrophotometer, Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDAX) and Transmission Electron Microscope (TEM) and Selected Area (Electron) Diffraction (SAED) patterns. The fungal secondary metabolite crude was extracted from the mono and co-culture of Trichoderma spp. And were analyzed by GC-MS, which was further subjected for antibacterial activity against Xanthomonas oryzae pv. Oryzae, the causative organism for Bacterial Leaf Blight (BLB) in rice. Our results showed that the maximum zone of inhibition was recorded from the co-culture of Trichoderma spp. rather than mono cultures, which indicates that co-cultivation of beneficial fungi can stimulate the synthesis of novel secondary metabolites better than in monocultures. ZnO NPs were synthesized from fungal secondary metabolites of mono cultures of Trichoderma harzianum (PGT4), Trichoderma reesei (PGT5), Trichoderma reesei (PGT13) and co-culture (PGT4 + PGT5 + PGT13). These ZnO NPs were checked for antibacterial activity against Xoo, which was found to be of a dose-dependent manner. In summary, the biosynthesized ZnO NPs and secondary metabolites from co-culture of Trichoderma spp. are ecofriendly and can be used as an alternative for chemical fertilizers in agriculture.

15.
Saudi J Biol Sci ; 27(8): 1923-1930, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32714015

ABSTRACT

Present study, report the biofabrication of zinc oxide nanoparticles from aqueous leaf extract of Melia azedarach (MaZnO-NPs) through solution combustion method and their novel application in preventing the growth of seed-borne fungal pathogens of soybean (Cladosporium cladosporioides and Fusarium oxysporum). The standard blotter method was employed to isolate fungi and was identified through molecular techniques. The characterization of MaZnO-NPs was carried out by UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). The physicochemical characterization confirmed the particles were of high purity and nano size (30-40 nm) with a hexagonal shape. The synthesized MaZnO-NPs inhibited the growth of C. cladosporioides and F. oxysporum in a dose dependent manner. Biomass, ergosterol, lipid peroxidation, intracellular reactive oxygen species and membrane integrity determination upon MaZnO-NPs treatment offered significant activities there by confirming the mechanism of action against the test pathogens. In conclusion, due to the effectiveness of MaZnO-NPs in controlling the growth of C. cladosporioides and F. oxysporum, the synthesized MaZnO-NPs provides insight towards their potential application in agriculture and food industries.

16.
Biomolecules ; 10(7)2020 06 30.
Article in English | MEDLINE | ID: mdl-32630019

ABSTRACT

In this work, we aimed to synthesize zinc oxide nanoparticles (ZnONPs) using an aqueous extract of Cassia auriculata leaves (CAE) at room temperature without the provision of additional surfactants or capping agents. The formation of as-obtained ZnONPs was analyzed by UV-visible (ultraviolet) absorption and emission spectroscopy, X-ray photoemission spectroscopy (XPS), X-ray diffraction analysis (XRD), energy dispersive X-ray diffraction (EDX), thermogravimetric analysis/differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The XRD results reflect the wurtzite structure of as-prepared ZnONPs, which produced diffraction patterns showing hexagonal phases. The SEM images indicate that the morphology of as-prepared ZnONPs is composed of hexagonal nanostructures with an average diameter of 20 nm. The HR-TEM result shows that the inter-planar distance between two lattice fringes is 0.260 nm, which coincides with the distance between the adjacent (d-spacing) of the (002) lattice plane of ZnO. The fluorescence emission spectrum of ZnONPs dispersed in ethanol shows an emission maximum at 569 nm, revealing the semiconductor nature of ZnO. As-obtained ZnONPs enhanced the tumoricidal property of CAE in MCF-7 breast cancer cells without significant inhibition of normal human breast cells, MCF-12A. Furthermore, we have studied the antibacterial effects of ZnONPs, which showed direct cell surface contact, resulting in the disturbance of bacterial cell integrity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Fabaceae/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Green Chemistry Technology , Humans , MCF-7 Cells , Microbial Sensitivity Tests , Particle Size , Plant Leaves/chemistry , X-Ray Diffraction
17.
Antibiotics (Basel) ; 9(5)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429514

ABSTRACT

Synthesis of nanoparticles using the plants has several advantages over other methods due to the environmentally friendly nature of plants. Besides being environmentally friendly, the synthesis of nanoparticles using plants or parts of the plants is also cost effective. The present study focuses on the biosynthesis of zinc oxide nanoparticles (ZnO NPs) using the seed extract of Butea monsoperma and their effect on to the quorum-mediated virulence factors of multidrug-resistant clinical isolates of Pseudomonas aeruginosa at sub minimum inhibitory concentration (MIC). The synthesized ZnO NPs were characterized by different techniques, such as Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). The average size of the nanoparticles was 25 nm as analyzed by TEM. ZnO NPs at sub MIC decreased the production of virulence factors such as pyocyanin, protease and hemolysin for P. aeruginosa (p ≤ 0.05). The interaction of NPs with the P. aeruginosa cells on increasing concentration of NPs at sub MIC levels showed greater accumulation of nanoparticles inside the cells as analyzed by TEM.

18.
Antibiotics (Basel) ; 9(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120845

ABSTRACT

Abstract: Plant-based synthesis of eco-friendly nanoparticles has widespread applications in many fields, including medicine. Biofilm-a shield for pathogenic microorganisms-once formed, is difficult to destroy with antibiotics, making the pathogen resistant. Here, we synthesized gold nanoparticles (AuNPs) using the stem of an Ayurvedic medicinal plant, Tinospora cordifolia, and studied the action of AuNPs against Pseudomonas aeruginosa PAO1 biofilm. The synthesized AuNPs were characterized by techniques such as ultraviolet-visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive X-ray diffraction, X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy. The AuNPs were spherically shaped with an average size of 16.1 nm. Further, the subminimum inhibitory concentrations (MICs) of AuNPs (50, 100, and 150 µg/mL) greatly affected the biofilm-forming ability of P. aeruginosa, as observed by crystal violet assay and SEM, which showed a decrease in the number of biofilm-forming cells with increasing AuNP concentration. This was further justified by confocal laser scanning microscopy (CLSM), which showed irregularities in the structure of the biofilm at the sub-MIC of AuNPs. Further, the interaction of AuNPs with PAO1 at the highest sub-MIC (150 µg/mL) showed the internalization of the nanoparticles, probably affecting the tendency of PAO1 to colonize on the surface of the nanoparticles. This study suggests that green-synthesized AuNPs can be used as effective nano-antibiotics against biofilm-related infections caused by P. aeruginosa.

19.
Biomolecules ; 10(2)2020 02 19.
Article in English | MEDLINE | ID: mdl-32092985

ABSTRACT

Cinnamomum verum plant extract mediated propellant chemistry route was used for the green synthesis of zinc oxide nanoparticles. Prepared samples were confirmed for their nano regime using advanced characterization techniques such as powder X-ray diffraction and microscopic techniques such as scanning electron microscopy and transmission electron microscopy. The energy band gap of the green synthesized zinc oxide (ZnO)-nanoparticles (NPs) were found between 3.25-3.28 eV. Fourier transmission infrared spectroscopy shows the presence of Zn-O bond within the wave number of 500 cm-1. SEM images show the specific agglomeration of particles which was also confirmed by TEM studies. The green synthesized ZnO-NPs inhibited the growth of Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 125 µg mL-1 and 62.5 µg mL-1, respectively. The results indicate the prepared ZnO-NPs can be used as a potential antimicrobial agent against harmful pathogens.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cinnamomum zeylanicum/chemistry , Nanoparticles/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Green Chemistry Technology , Humans , Nanoparticles/ultrastructure , Plant Bark/chemistry , Plant Extracts/chemistry , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Zinc Oxide/chemical synthesis
20.
Curr Pharm Des ; 26(11): 1138-1144, 2020.
Article in English | MEDLINE | ID: mdl-31951164

ABSTRACT

In the recent scenario, nanotechnology-based therapeutics intervention has gained tremendous impetus all across the globe. Nano-based pharmacological intervention of various bioactive compounds has been explored on an increasing scale. Sesquiterpenes are major constituents of essential oils (EOs) present in various plant species which possess intriguing therapeutic potentials. However, owing to their poor physicochemical properties; they have pharmacological limitations. Recent advances in nano-based therapeutic interventions offer various avenues to improve their therapeutic applicability. Reckoning with these, the present review collates various nano-based therapeutic intervention of sesquiterpenes with prospective potential against various debilitating diseases especially cancer. In our viewpoint, considering the burgeoning advancement in the field of nanomedicine; in the near future, the clinical applicability of these nano-formulated sesquiterpenes can be foreseen with great enthusiasm.


Subject(s)
Neoplasms , Oils, Volatile , Sesquiterpenes , Humans , Nanomedicine , Neoplasms/drug therapy , Oils, Volatile/pharmacology , Prospective Studies , Sesquiterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...