Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 125(35): 7633-7643, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34431674

ABSTRACT

Perylenediimides (PDIs) are important molecular building blocks that are being investigated for their applicability in optoelectronic technologies. Covalently linking multiple PDI acceptors at the 2,5,8,11 (headland) positions adjacent to the PDI carbonyl groups is reported to yield higher power conversion efficiencies in photovoltaic cells relative to PDI acceptors linked at the 1,6,7,12 (bay) positions. While the photophysical properties of PDIs linked via the bay positions have been investigated extensively, those linked at the headland positions have received far less attention. We showed previously that symmetry-breaking charge separation (SB-CS) in PDIs hold promise as a strategy for increasing photovoltaic efficiency. Here we use transient absorption and emission spectroscopies to investigate the competition between SB-CS, fluorescence, and internal conversion in three related PDI dimers linked at the headland positions with o-, m-, and p-phenylene moieties: o-PDI2, m-PDI2, and p-PDI2, respectively. It is found that o-PDI2 supports SB-CS yielding PDI•+-PDI•-, which is in equilibrium with the o-PDI2 first excited state in a polar solvent (CH2Cl2) while m-PDI2 and p-PDI2 exhibit accelerated internal conversion due to the motion of the linker along with subnanosecond intersystem crossing (ISC). Electronic coupling and structural dynamics are shown to play a significant role, with o-PDI2 being the only member of the series that exhibits significant through-bond interchromophore coupling. The pronounced o-PDI2 steric congestion prevents the free internal rotation that leads to rapid deactivation of the excited state in the other dimers.

2.
J Am Chem Soc ; 143(16): 6123-6139, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33848146

ABSTRACT

The end-capping group (EG) is the essential electron-withdrawing component of nonfullerene acceptors (NFAs) in bulk heterojunction (BHJ) organic solar cells (OSCs). To systematically probe the impact of two frequent EG functionalization strategies, π-extension and halogenation, in A-DAD-A type NFAs, we synthesized and characterized four such NFAs: BT-BIC, LIC, L4F, and BO-L4F. To assess the relative importance of these strategies, we contrast these NFAs with the baseline acceptors, Y5 and Y6. Up to 16.6% power conversion efficiency (PCE) in binary inverted OSCs with BT-BO-L4F combining π-extension and halogenation was achieved. When these two factors are combined, the effect on optical absorption is cumulative. Single-crystal π-π stacking distances are similar for the EG strategies of π-extension. Increasing the alkyl substituent length from BT-L4F to BT-BO-L4F significantly alters the packing motif and eliminates the EG core interactions of BT-L4F. Electronic structure computations reveal some of the largest NFA π-π electronic couplings observed to date, 103.8 meV in BT-L4F and 47.5 meV in BT-BO-L4F. Computed electronic reorganization energies, 132 and 133 meV for BT-L4F and BT-BO-L4F, respectively, are also lower than Y6 (150 meV). BHJ blends show preferential π-face-on orientation, and both fluorination and π-extension increase NFA crystallinity. Femto/nanosecond transient absorption spectroscopy (fs/nsTA) and integrated photocurrent device analysis (IPDA) indicate that π-extension modifies the phase separation to enhance film ordering and carrier mobility, while fluorination suppresses unimolecular recombination. This systematic study highlights the synergistic effects of NFA π-extension and fluorination in affording efficient OSCs and provides insights into designing next-generation materials.

3.
J Am Chem Soc ; 142(34): 14532-14547, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32698577

ABSTRACT

Emerging nonfullerene acceptors (NFAs) with crystalline domains enable high-performance bulk heterojunction (BHJ) solar cells. Thermal annealing is known to enhance the BHJ photoactive layer morphology and performance. However, the microscopic mechanism of annealing-induced performance enhancement is poorly understood in emerging NFAs, especially regarding competing factors. Here, optimized thermal annealing of model system PBDB-TF:Y6 (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]-thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) decreases the open circuit voltage (VOC) but increases the short circuit current (JSC) and fill factor (FF) such that the resulting power conversion efficiency (PCE) increases from 14 to 15% in the ambient environment. Here we systematically investigate these thermal annealing effects through in-depth characterizations of carrier mobility, film morphology, charge photogeneration, and recombination using SCLC, GIXRD, AFM, XPS, NEXAFS, R-SoXS, TEM, STEM, fs/ns TA spectroscopy, 2DES, and impedance spectroscopy. Surprisingly, thermal annealing does not alter the film crystallinity, R-SoXS characteristic size scale, relative average phase purity, or TEM-imaged phase separation but rather facilitates Y6 migration to the BHJ film top surface, changes the PBDB-TF/Y6 vertical phase separation and intermixing, and reduces the bottom surface roughness. While these morphology changes increase bimolecular recombination (BR) and lower the free charge (FC) yield, they also increase the average electron and hole mobility by at least 2-fold. Importantly, the increased µh dominates and underlies the increased FF and PCE. Single-crystal X-ray diffraction reveals that Y6 molecules cofacially pack via their end groups/cores, with the shortest π-π distance as close as 3.34 Å, clarifying out-of-plane π-face-on molecular orientation in the nanocrystalline BHJ domains. DFT analysis of Y6 crystals reveals hole/electron reorganization energies of as low as 160/150 meV, large intermolecular electronic coupling integrals of 12.1-37.9 meV rationalizing the 3D electron transport, and relatively high µe of 10-4 cm2 V-1 s-1. Taken together, this work clarifies the richness of thermal annealing effects in high-efficiency NFA solar cells and tasks for future materials design.

4.
J Am Chem Soc ; 141(34): 13410-13420, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31379156

ABSTRACT

Achieving efficient polymer solar cells (PSCs) requires a structurally optimal donor-acceptor heterojunction morphology. Here we report the combined experimental and theoretical characterization of a benzodithiophene-benzothiadiazole donor polymer series (PBTZF4-R; R = alkyl substituent) blended with the non-fullerene acceptor ITIC-Th and analyze the effects of substituent dimensions on blend morphology, charge transport, carrier dynamics, and PSC metrics. Varying substituent dimensions has a pronounced effect on the blend morphology with a direct link between domain purity, to some extent domain dimensions, and charge generation and collection. The polymer with the smallest alkyl substituent yields the highest PSC power conversion efficiency (PCE, 11%), reflecting relatively small, high-purity domains and possibly benefiting from "matched" donor polymer-small molecule acceptor orientations. The distinctive morphologies arising from the substituents are investigated using molecular dynamics (MD) simulations which reveal that substituent dimensions dictate a well-defined set of polymer conformations, in turn driving chain aggregation and, ultimately, the various film morphologies and mixing with acceptor small molecules. A straightforward energetic parameter explains the experimental polymer domain morphological trends, hence PCE, and suggests strategies for substituent selection to optimize PSC materials morphologies.

5.
J Org Chem ; 82(4): 2004-2010, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28103020

ABSTRACT

Functionalized diazatetracenes are prepared using a new two-step sequence. The use of a dichlorobenzaldehyde in a Cu-catalyzed benzannulation of acetylenes provides functionalized dichloronaphthalenes that afford diazatetracenes using Buchwald-Hartwig aminations. This approach provides unique substitution patterns and rapid access to covalently linked dimeric diazatetracenes. Their electronic properties are characterized by UV-vis absorption/emission and cyclic voltammetry, revealing strong effects from both external stimuli by acid and internal substituent effects.

6.
Chem Sci ; 7(10): 6357-6364, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-28567248

ABSTRACT

A Cu-catalyzed benzannulation reaction transforms ortho(arylene ethynylene) oligomers into ortho-arylenes. This approach circumvents iterative Suzuki cross-coupling reactions previously used to assemble hindered ortho-arylene backbones. These derivatives form helical folded structures in the solid-state and in solution, as demonstrated by X-ray crystallography and solution-state NMR analysis. DFT calculations of misfolded conformations are correlated with variable-temperature 1H and EXSY NMR to reveal that folding is cooperative and more favorable in halide-substituted naphthalenes. Helical ortho-arylene foldamers with specific aromatic sequences organize functional π-electron systems into arrangements ideal for ambipolar charge transport and show preliminary promise for the surface-mediated synthesis of structurally defined graphene nanoribbons.

7.
Chemistry ; 21(50): 18122-7, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26515732

ABSTRACT

Independent control of halide substitution at six of the seven naphthalene positions of 2-arylnaphthalenes is achieved through the regioselective benzannulation of chloro-, bromo-, and iodoalkynes. The modularity of this approach is demonstrated through the preparation of 44 polyheterohalogenated naphthalene products, most of which are difficult to access through known naphthalene syntheses. The outstanding regioselectivity of the reaction is both predictable and proven unambiguously by single-crystal X-ray diffraction for many examples. This synthetic method enables the rapid preparation of complex aromatic systems poised for further derivatization using established cross-coupling methods. The power and versatility of this approach makes substituted naphthalenes highly attractive building blocks for new organic materials and diversity-oriented synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...