Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 61(8): 1569-1577, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966792

ABSTRACT

Tubaani is a local delicacy prepared with Piliostigma thonningii leaves. The leaves may contain trace/heavy metals and important phytonutrients that could impact consumers' health. Concerns over the nutritional and toxicological implications of Piliostigma thonningii leaves are critical. Tubaani food and Piliostigma thonningii leaf samples were investigated using Neutron Activation Analysis (NAA) and Spectrophotometry technique. The health risk of Tubaani was also assessed by calculating the target hazard quotient (THQ) and hazard index (HI) of potentially toxic elements. Fifteen trace elements were detected at non-toxicological concentrations in the samples analyzed. No significant difference (p > 0.05) was observed between the samples' mean concentrations. The phenolic content in leaf extracts was higher as compared to the flavonoids. However, the flavonoids in the leaves had an effect on the food samples, unlike the phenols. The THQ and HI of the elements were below 1.0. There is no reason to be concerned about the current dietary intake of the potentially toxic elements in the routine consumption of Tubaani as portrayed in data obtained in this investigation by NAA, THQ, and HI.

2.
PLoS One ; 19(2): e0299072, 2024.
Article in English | MEDLINE | ID: mdl-38412163

ABSTRACT

This study uses CR-39 radon detectors to examine radon distributions, seasonal indoor radon variations, correction factors, and the influence of building materials and characteristics on indoor radon concentration in 120 dwellings. The study also determines the spatial distribution of radon levels using the ArcGIS geostatistical method. Radon detectors were exposed in bedrooms from April to July (RS), August to November (DS); December to March (HS), and January-December (YS) from 2021 to 2022. The result for the radon levels during the weather seasons were; 32.3 to 190.1 Bqm-3 (80.9 ± 3.2 Bq/m3) for (RS), 30.8 to 151.4 Bqm-3 (68.5 ± 2.7 Bqm-3) for HS and 24.8 to 112.9 Bqm-3(61.7 ± 2.1 Bqm-3) for DS, and 25.2 to 145.2 Bq/m3 (69.4 ± 2.7 Bqm-3). The arithmetic mean for April to July season was greater than August to November. The correction factors associated with this study ranged from 0.9 to 1.2. The annual effective dose (AE) associated with radon data was varied from 0.6 to 4.04 mSv/y (1.8 ± 0.1 mSv/y). The April to July period which was characterized by rains recorded the highest correlation coefficient and indoor radon concentration. Distribution and radon mapping revealed radon that the exposure to the occupant is non-uniformly spread across the studied dwellings. 15.4% of the studied data exceeded WHO reference values of 100 Bq/m3. The seasonal variation, dwelling age, and building materials were observed to have a substantial impact on the levels of radon concentration within the buildings.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Radon/analysis , Seasons , Air Pollution, Indoor/analysis , Ghana , Weather , Housing , Radiation Monitoring/methods , Air Pollutants, Radioactive/analysis
3.
Radiat Prot Dosimetry ; 200(1): 12-24, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37715503

ABSTRACT

Assessment of radionuclides, indoor radon (222RnI), radon exhalation (222Rnex), and soil characteristics in the coastal part of Kpando has been studied using HPGe, CR-39 and sieving techniques. Statistical analysis between radionuclides, radon levels and soil characteristics was done using Pearson's correlation. The mean radionuclide concentration, radon levels and soil characteristics were obtained as 226Ra (23.1 ± 1.4 Bq per kg), 232Th (34.6 ± 2.9 Bq per kg), 40K (187.1 ± 13.7 Bq per kg), 222RnI (64.70 ± 2.7 Bq per m3), 222Rnex (7.9 ± 0.5 µBq per m2h), sandy (45.9 ± 3.9%), silt (40.7 ± 3.1%), clay (13.5 ± 0.8%), porosity (0.6 ± 0.1) and moisture (7.6 ± 0.8%). Radiological effects estimated were within recommended limits. The maximum positive and negative coefficients exist between 222Ra/222Rnex (1.0) and 222Rnex/MC (-0.9), respectively. Radon exhalation correlates better with soil characteristics. The statistical analysis indicated that soil characteristics have significant effects on radionuclides and radon levels in soils and dwellings.


Subject(s)
Radiation Monitoring , Radioactivity , Radium , Radon , Soil Pollutants, Radioactive , Radon/analysis , Thorium/analysis , Radium/analysis , Soil , Ghana , Lakes , Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...