Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893370

ABSTRACT

Kallopterolides A-I (1-9), a family of nine diterpenoids possessing either a cleaved pseudopterane or a severed cembrane skeleton, along with several known compounds were isolated from the Caribbean Sea plume Antillogorgia kallos. The structures and relative configurations of 1-9 were characterized by analysis of HR-MS, IR, UV, and NMR spectroscopic data in addition to computational methods and side-by-side comparisons with published NMR data of related congeners. An investigation was conducted as to the potential of the kallopterolides as plausible in vitro anti-inflammatory, antiprotozoal, and antituberculosis agents.


Subject(s)
Anthozoa , Diterpenes , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology , Animals , Anthozoa/chemistry , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/isolation & purification , Caribbean Region , Molecular Structure , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Magnetic Resonance Spectroscopy , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/isolation & purification
2.
Life (Basel) ; 14(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929667

ABSTRACT

Plakortinic acids C (1) and D (2), an unseparable pair of endoperoxide polyketides isolated and purified from the symbiotic association of Caribbean Sea sponges Plakortis symbiotica-Xestospongia deweerdtae, underwent in vitro evaluation for antiplasmodial activity against the malaria parasite Plasmodium berghei using a drug luminescence assay. Initial screening at 10 µM revealed 50% in vitro parasite growth inhibition. The title compounds displayed antiplasmodial activity with an EC50 of 5.3 µM toward P. berghei parasites. The lytic activity against erythrocytes was assessed through an erythrocyte cell lysis assay, which showed non-lytic activity at lower concentrations ranging from 1.95 to 3.91 µM. The antiplasmodial activity and the absence of hemolytic activity support the potential of plakortinic acids C (1) and D (2) as promising lead compounds. Moreover, drug-likeness (ADMET) properties assessed through the pkCSM server predicted high intestinal absorption, hepatic metabolism, and volume of distribution, indicating favorable pharmacokinetic profiles for oral administration. These findings suggest the potential suitability of these metabolites for further investigations of antiplasmodial activity in multiple parasitic stages in the mosquito and Plasmodium falciparum. Notably, this study represents the first report of a marine natural product exhibiting the unique 7,8-dioxatricyclo[4.2.2.02,5]dec-9-ene motif being evaluated against malaria.

3.
Tetrahedron Lett ; 662021 Mar 02.
Article in English | MEDLINE | ID: mdl-33678913

ABSTRACT

Plakortinic acids C (3) and D (4), two unprecedented peroxide-polyketides with 7,8-dioxatricyclo[4.2.2.02,5]dec-9-ene scaffold, as well as known biogenetically related congeners, plakortinic acids A (1) and B (2), were isolated from a two-sponge association of Plakortis symbiotica-Xestospongia deweerdtae. Upon chemical derivatization, the structures and relative configurations of 3 and 4 were characterized by analysis of HRESIMS and NMR spectroscopic data, molecular modeling studies, and chiroptical comparisons with known natural products and published values of [α]D of related synthetic analogs. A mixture of methyl ester derivatives 5 and 6 displayed negligible cytotoxicity against a panel of 60 cell lines of various human cancers at a concentration of 10 µM.

4.
Cancers (Basel) ; 12(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32413975

ABSTRACT

The delivery of Cytochrome c (Cyt c) to the cytosol stimulates apoptosis in cells where its release from mitochondria and apoptotic induction is inhibited. We developed a drug delivery system consisting of Cyt c nanoparticles decorated with folate-poly(ethylene glycol)-poly(lactic-co-glycolic acid)-thiol (FA-PEG-PLGA-SH) to deliver Cyt c into cancer cells and tested their targeting in the Lewis Lung Carcinoma (LLC) mouse model. Cyt c-PLGA-PEG-FA nanoparticles (NPs) of 253 ± 55 and 354 ± 11 nm were obtained by Cyt c nanoprecipitation, followed by surface decoration with the co-polymer SH-PLGA-PEG-FA. The internalization of Cyt c-PLGA-PEG-FA nanoparticles (NPs) in LLC cells was confirmed by confocal microscopy. NP caspase activation was more efficient than the NP-free formulation. Caspase activity assays showed NPs retained 88-96% Cyt c activity. The NP formulations were more effective in decreasing LLC cell viability than NP-free formulation, with IC50 49.2 to 70.1 µg/mL versus 129.5 µg/mL, respectively. Our NP system proved to be thrice as selective towards cancerous than normal cells. In vivo studies using near infrared-tagged nanoparticles show accumulation in mouse LLC tumor 5 min post-injection. In conclusion, our NP delivery system for Cyt c shows superiority over the NP-free formulation and reaches a folic acid-overexpressing tumor in an immune-competent animal model.

6.
RNA ; 26(5): 541-549, 2020 05.
Article in English | MEDLINE | ID: mdl-32014999

ABSTRACT

The PI3K/Akt/mTOR kinase pathway is extensively deregulated in human cancers. One critical node under regulation of this signaling axis is eukaryotic initiation factor (eIF) 4F, a complex involved in the control of translation initiation rates. eIF4F-dependent addictions arise during tumor initiation and maintenance due to increased eIF4F activity-generally in response to elevated PI3K/Akt/mTOR signaling flux. There is thus much interest in exploring eIF4F as a small molecule target for the development of new anticancer drugs. The DEAD-box RNA helicase, eIF4A, is an essential subunit of eIF4F, and several potent small molecules (rocaglates, hippuristanol, pateamine A) affecting its activity have been identified and shown to demonstrate anticancer activity in vitro and in vivo in preclinical models. Recently, a number of new small molecules have been reported as having the capacity to target and inhibit eIF4A. Here, we undertook a comparative analysis of their biological activity and specificity relative to the eIF4A inhibitor, hippuristanol.


Subject(s)
Antineoplastic Agents/chemistry , Eukaryotic Initiation Factor-4A/chemistry , Neoplasms/drug therapy , Small Molecule Libraries/chemistry , Sterols/chemistry , Antineoplastic Agents/pharmacology , Benzofurans/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Epoxy Compounds/chemistry , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Eukaryotic Initiation Factor-4F/antagonists & inhibitors , Eukaryotic Initiation Factor-4F/chemistry , Humans , Macrolides/chemistry , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-akt/genetics , Small Molecule Libraries/pharmacology , Sterols/pharmacology , TOR Serine-Threonine Kinases/genetics , Thiazoles/chemistry
7.
Angew Chem Int Ed Engl ; 59(3): 1144-1148, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31696595

ABSTRACT

The discovery of biologically active small molecules requires sifting through large amounts of data to identify unique or unusual arrangements of atoms. Here, we develop, test and evaluate an atom-based sort to identify novel features of secondary metabolites and demonstrate its use to evaluate novelty in marine microbial and sponge extracts. This study outlines an important ongoing advance towards the translation of autonomous systems to identify, and ultimately elucidate, atomic novelty within a complex mixture of small molecules.

8.
Clin Cancer Res ; 24(17): 4256-4270, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29844128

ABSTRACT

Purpose: The DEAD-box RNA helicase eIF4A1 carries out the key enzymatic step of cap-dependent translation initiation and is a well-established target for cancer therapy, but no drug against it has entered evaluation in patients. We identified and characterized a natural compound with broad antitumor activities that emerged from the first target-based screen to identify novel eIF4A1 inhibitors.Experimental Design: We tested potency and specificity of the marine compound elatol versus eIF4A1 ATPase activity. We also assessed eIF4A1 helicase inhibition, binding between the compound and the target including binding site mutagenesis, and extensive mechanistic studies in cells. Finally, we determined maximum tolerated dosing in vivo and assessed activity against xenografted tumors.Results: We found elatol is a specific inhibitor of ATP hydrolysis by eIF4A1 in vitro with broad activity against multiple tumor types. The compound inhibits eIF4A1 helicase activity and binds the target with unexpected 2:1 stoichiometry at key sites in its helicase core. Sensitive tumor cells suffer acute loss of translationally regulated proteins, leading to growth arrest and apoptosis. In contrast to other eIF4A1 inhibitors, elatol induces markers of an integrated stress response, likely an off-target effect, but these effects do not mediate its cytotoxic activities. Elatol is less potent in vitro than the well-studied eIF4A1 inhibitor silvestrol but is tolerated in vivo at approximately 100× relative dosing, leading to significant activity against lymphoma xenografts.Conclusions: Elatol's identification as an eIF4A1 inhibitor with in vivo antitumor activities provides proof of principle for target-based screening against this highly promising target for cancer therapy. Clin Cancer Res; 24(17); 4256-70. ©2018 AACR.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Biological Products/pharmacology , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Neoplasms/drug therapy , Spiro Compounds/pharmacology , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Animals , Apoptosis/drug effects , Aquatic Organisms/chemistry , Biological Products/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Eukaryotic Initiation Factor-4A/chemistry , Eukaryotic Initiation Factor-4A/genetics , Fibroblasts/drug effects , Heterografts , Humans , Mice , Models, Molecular , Neoplasms/genetics , Protein Biosynthesis/drug effects , Proteomics , Spiro Compounds/chemistry
9.
Lipids ; 51(2): 245-56, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26694606

ABSTRACT

The novel fatty acids (2R,5Z,9Z)-2-methoxy-25-methyl-5,9-hexacosadienoic acid (1a) and (2R,5Z,9Z)-2-methoxy-24-methyl-5,9-hexacosadienoic acid (1b) were isolated in 80 % purity from the Caribbean sponge Asteropus niger by chloroform/methanol extraction followed by solvent partitioning and silica gel column chromatography. The compounds were characterized by utilizing a combination of gas chromatography-mass spectrometry, nuclear magnetic resonance, and circular dichroism. Acids 1a and 1b were not detected in the phospholipids (PtdCho and PtdIns) of the sponge, but rather as free FA and possibly in glycosylceramides. The mixtures of 1a and 1b displayed cytotoxicity towards THP-1 and HepG2 cells with EC50's between 41 and 35 µg/mL. Apoptosis was not the preferred mode of cell death induced by 1a-1b in the THP-1 cells. This implies other types of cytotoxicity mechanisms, such as membrane disruption and/or the inhibition (EC50 = 1.8 µg/mL) of the human topoisomerase IB enzyme (hTopIB), with a mechanism of inhibition different from the one displayed by camptothecin (CPT). In a separate experiment, the mixture of 1a and 1b also displayed cytotoxicity towards ex vivo mouse splenocytes infected with Leishmania infantum amastigotes (IC(50) = 0.17 mg/mL) and free living promastigotes (IC(50) = 0.34 mg/mL). It was also found that the FA were inhibitory of the Leishmania topoisomerase IB (LTopIB) with an EC(50) = 5.1 µg/mL. Taken together, 1a and 1b represent a new class of FA with potential as TopIB inhibitors that preferentially inhibit hTopIB over LTopIB.


Subject(s)
DNA Topoisomerases/biosynthesis , Fatty Acids, Unsaturated/chemistry , Glycosphingolipids/chemistry , Leishmaniasis, Visceral/drug therapy , Porifera/chemistry , Animals , DNA Topoisomerases/chemistry , Fatty Acids, Unsaturated/pharmacology , Gas Chromatography-Mass Spectrometry , Hep G2 Cells , Humans , Leishmania infantum/drug effects , Leishmania infantum/pathogenicity , Leishmaniasis, Visceral/parasitology , Magnetic Resonance Spectroscopy , Mice , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology
10.
Gac Med Mex ; 148(2): 192-3, 2012.
Article in Spanish | MEDLINE | ID: mdl-22622319

ABSTRACT

The vestibular schwannoma is a benign intracranial tumor of the myelin-forming cells of the vestibulocochlear nerve or cranial nerve VIII. It comprises 8-10% of all intracranial neoplasms in adults. It originates in the vestibular portion of the cranial nerve VIII and it is located in the cerebellopontine angle. This disorder is characterized by ipsilateral hearing loss, tinnitus, disturbed sense of balance and altered gait, facial numbness, muscle weakness or ipsilateral paralysis. This report presents the magnetic resonance imaging of a patient with this rare condition.


Subject(s)
Neuroma, Acoustic , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Neuroma, Acoustic/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...