Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Earth Environ ; 5(1): 229, 2024.
Article in English | MEDLINE | ID: mdl-38706883

ABSTRACT

Freshwater algae exhibit complex dynamics, particularly in meso-oligotrophic lakes with sudden and dramatic increases in algal biomass following long periods of low background concentration. While the fundamental prerequisites for algal blooms, namely light and nutrient availability, are well-known, their specific causation involves an intricate chain of conditions. Here we examine a recent massive Uroglena bloom in Lake Geneva (Switzerland/France). We show that a certain sequence of meteorological conditions triggered this specific algal bloom event: heavy rainfall promoting excessive organic matter and nutrients loading, followed by wind-induced coastal upwelling, and a prolonged period of warm, calm weather. The combination of satellite remote sensing, in-situ measurements, ad-hoc biogeochemical analyses, and three-dimensional modeling proved invaluable in unraveling the complex dynamics of algal blooms highlighting the substantial role of littoral-pelagic connectivities in large low-nutrient lakes. These findings underscore the advantages of state-of-the-art multidisciplinary approaches for an improved understanding of dynamic systems as a whole.

2.
Sci Rep ; 14(1): 8459, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605068

ABSTRACT

Slow and long-term variations of sea surface temperature anomalies have been interpreted as a red-noise response of the ocean surface mixed layer to fast and random atmospheric perturbations. How fast the atmospheric noise is damped depends on the mixed layer depth. In this work we apply this theory to determine the relevant spatial and temporal scales of surface layer thermal inertia in lakes. We fit a first order auto-regressive model to the satellite-derived Lake Surface Water Temperature (LSWT) anomalies in Lake Garda, Italy. The fit provides a time scale, from which we determine the mixed layer depth. The obtained result shows a clear spatial pattern resembling the morphological features of the lake, with larger values (7.18± 0.3 m) in the deeper northwestern basin, and smaller values (3.18 ± 0.24 m) in the southern shallower basin. Such variations are confirmed by in-situ measurements in three monitoring points in the lake and connect to the first Empirical Orthogonal Function of satellite-derived LSWT and chlorophyll-a concentration. Evidence from our case study open a new perspective for interpreting lake-atmosphere interactions and confirm that remotely sensed variables, typically associated with properties of the surface layers, also carry information on the relevant spatial and temporal scales of mixed-layer processes.

3.
Sci Total Environ ; 722: 137720, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32208239

ABSTRACT

Local knowledge on surface currents and transport patterns in Lake Garda is acquired through interviews among wind-surfers, sailors, fishermen, ferry boat drivers, firefighters nautical rescue team, and officers from the environmental protection agency. Data are collected by means of individual interviews and focus groups, analyzed for internal consistency and summarized in qualitative maps. Three-dimensional numerical simulations are performed using a one-way coupled atmospheric-hydrodynamic model and the results are compared with the observations of the interviewees. Through this combined effort, currents that were not evident to the scientific community, but are well-known to sailors and surfers, can now be recognized and physically understood, like the 'Corif' that flows along the eastern shore in summertime between late morning and afternoon, when wind blows from the south. The transport patterns are also identified, like the predominant east-to-west surface transport experienced by fishermen under storm events and floods, that is confirmed for northerly wind, and the west-to-east transport for southerly wind. Moreover, the trajectory of a drifting capsized boat is reproduced by the model and the dynamics of the accident (location and timing) are reconstructed in collaboration with the firefighters nautical rescue team of Trento and based on information from local newspapers and witnesses. This exercise demonstrates that the joint effort of the scientific community and local experts can produce advances in the understanding of large-scale hydrodynamic processes in lakes.

4.
Sci Rep ; 9(1): 8290, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31165755

ABSTRACT

Ventilation mechanisms in deep lakes are crucial for their ecosystem functioning. In this paper we show the relevance of planetary rotation in affecting ventilation processes in relatively narrow, elongated deep lakes. Through a recent field campaign in Lake Garda (Italy), we provide explicit observational evidence for the development of lake-wide wind-driven secondary flows influenced by the Coriolis force in a narrow lake. The interpretation of these observations is supported by results from numerical simulations with a three-dimensional model of the lake. The results add an additional element, often neglected in narrow lakes, to be carefully considered when assessing the response of lakes to external forcing and climate change.

SELECTION OF CITATIONS
SEARCH DETAIL
...