Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucl Med Commun ; 40(11): 1166-1173, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31469808

ABSTRACT

OBJECTIVE: Edge artifacts have been reported on in relation to F-PET using point spread function correction algorithms. The positron range of Ga is longer than F, and this difference is thought to result in different edge artifacts. The purpose of this study is to clarify the difference in edge artifacts in PET images using point spread function correction in Ga- and F-PET. METHODS: We used a National Electrical Manufacturers Association International Electrotechnical Commission body phantom. The phantom was filled severally with Ga and F solution. The PET data were obtained over a 90 minutes period using a True Point Biograph 16 scanner. The images were then reconstructed with the ordered subset expectation maximization with point spread function correction. The phantom image analyses were performed by a visual assessment of the PET images and profiles, and an absolute recovery coefficient, which was the ratio of the maximum radioactivity of any given hot sphere to its true radioactivity. RESULTS: The ring-like edge artifacts of Ga-PET were less prominent than those in F-PET. The relative radioactivity profiles of Ga-PET showed low overshoots of the maximum radioactivity although high overshoots did appear in F-PET. The absolute recovery coefficients of Ga-PET were smaller than those of F-PET. CONCLUSION: The edge artifacts of Ga-PET were less prominent than those of F-PET, and their overshoots were smaller. The difference in the positron range between Ga and F may possibly result in the difference in edge artifacts of images reconstructed using the point spread function correction algorithm.


Subject(s)
Artifacts , Fluorodeoxyglucose F18 , Gallium Radioisotopes , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography , Phantoms, Imaging , Time Factors
2.
Ann Nucl Med ; 32(1): 1-6, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29058224

ABSTRACT

OBJECTIVE: On 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET), signal-to-noise ratio in the liver (SNRliver) is used as a metric to assess image quality. However, some regions-of-interest (ROIs) are used when measuring the SNRliver. The purpose of this study is to examine the different ROIs and volumes of interest (VOIs) to obtain a reproducible SNRliver. METHODS: This study included 108 patients who underwent 18F-FDG-PET/CT scans for the purpose of cancer screening. We examined four different ROIs and VOIs; a 3-cm-diameter and a 4-cm-diameter circular ROI and a 3-cm-diameter and a 4-cm-diameter spherical VOI on the right lobe of the patients' livers. The average of SUV (SUVmean), standard deviation (SD) of SUV (SUVSD), SNRliver and SD of the SNRliver obtained using ROIs and VOIs were then compared. RESULTS: Although the SUVmean was not different among the ROIs and VOIs, the SUVSD was small with a 3-cm-diameter ROI. The largest SUVSD was obtained with a 4-cm-diameter spherical VOI. The SNRliver and the SD of the SNRliver with a 4-cm-diameter spherical VOI were the smallest, while those with a 3-cm-diameter circular ROI were the largest. These results suggest that a small ROI may be placed on a relatively homogeneous region not representing whole liver unintentionally. CONCLUSION: The SNRliver varied according to the shape and size of ROIs or VOIs. A 4-cm-diameter spherical VOI is recommended to obtain stable and reproducible SNRliver.


Subject(s)
Liver/diagnostic imaging , Positron Emission Tomography Computed Tomography , Signal-To-Noise Ratio , Female , Fluorodeoxyglucose F18 , Humans , Male , Middle Aged , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...