Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Exp Pharmacol ; 16: 25-35, 2024.
Article in English | MEDLINE | ID: mdl-38292834

ABSTRACT

Purpose: Phenolic compounds with antioxidant, antimicrobial, and anti-inflammatory properties have been identified in potatoes (Solanum tuberosum L.; Solanaceae), which may potentially contribute to wound healing. The study aimed to evaluate the effect of potato peel extract gel Granola variety on oral gingival wound healing in Wistar Rats. Methods: This research was a true experimental in vivo study, involving 30 male Wistar rats, aged 12-14 weeks and weighing approximately 150 to 200 grams. Surgical vertical incisions, each 3 mm in length, were made on the mandibular gingiva. The test group consisted of six subgroups, each comprising 5 rats. The negative control group received a base gel, while treatment groups were given 1% povidone-iodine solution, 0.1% triamcinolone acetonide oral paste, and 2%, 4%, and 6% potato peel extract gel. Wound lengths were measured on days 3, 7, and 14 to evaluate the healing process. Statistical analysis used the ANOVA test, a p-value of < 0.05 was considered statistically significant. Results: All experimental groups showed a reduction in wound length on days 3, 7, and 14. Notably, the application of 4% and 6% potato peel extract gel formulations facilitated to faster wound healing on day 3, surpassing the povidone-iodine and triamcinolone acetonide groups. However, by days 7 and 14, both the povidone-iodine group and the 6% formulation group demonstrated superior outcomes, although the differences in values were not statistically significant (p < 0.05). Conclusion: Potato peel extract gel formulations at 4% and 6% concentrations were found to expedite the healing of incision wounds, showing no statistically significant difference from the povidone-iodine and triamcinolone acetonide groups. Therefore, potato peel extract gel holds excellent potential for development as an alternative medicine for natural and safe wound healing therapy.

2.
Heliyon ; 9(6): e16674, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37274654

ABSTRACT

Pro-liposome is a type of drug delivery system (DDS) with numerous advantages as a stable material with various applicability for several pharmaceutical dosage forms, to effectively deliver the material to reach its target in the human body. Nevertheless, it is mostly designed by employing an organic solvent hence giving rise to safety issues. We have developed a method for the preparation of organic solvent-free liposomes composed of soy lecithin and cholesterol by highlighting the importance of temperature during the initial mixing process, a self-hydration of a thin layer spread film, and a spray-drying technique with a suitable excipient as the carrier. The method was successfully applied to prepare a stable pro-liposome containing 0.17% (w/w) of piperine with an encapsulation efficiency of 95.58 ± 2.91%. Moreover, the study revealed that a piperine molecule forms hydrophobic interaction with six of the adjacent phospholipids in the liposome structure, this information can be useful for researchers designing similar studies. In conclusion, organic solvent-free pro-liposome can be an alternative method in the development of DDS, and several factors could be continuously improved to fulfill the intended pro-liposome characteristic.

3.
J Exp Pharmacol ; 14: 243-253, 2022.
Article in English | MEDLINE | ID: mdl-35910085

ABSTRACT

Introduction: A combination of chemotherapy agents is the best choice in breast cancer treatment to increase the patient survival rate. 5-fluorouracil (5-FU) is one of the drugs applied in combination with other drugs to control and delay development of cancer cells. Nevertheless, the occurrence of multidrug resistance and dose-limiting cytotoxicity have limited the efficacy of 5-FU treatment. Therefore, the discovery of new anti-breast cancer drugs should be pursued. Objective: To study potency of a promising naturally derived compound, caffeic acid phenethyl ester (CAPE), for breast cancer treatment in single and combination with 5-FU. Methods: Cytotoxicity of CAPE, 5-FU, and 5-FU+CAPE was studied by in vitro MTT experiment in MCF-7 cell line, and RT-PCR analysis was used to evaluate the change in gene expression due to the treatment. Moreover, an enzymatic assay and molecular docking analysis were applied to evaluate the possible mechanism of substance-induced apoptosis. Results: The study revealed that a single treatment of CAPE showed cytotoxicity with IC50 6.6 ± 1.0 µM and 6.5 ± 2.9 µM at 24 h and 48 h, respectively. Meanwhile, 5-FU showed cytostatic activity. The 5-FU + CAPE has a synergistic effect at 24 h treatment with a CI = 0.5 and an additive effect at 48 h treatment with CI = 1.0. CAPE was also found to enhances the mRNA expression of caspase-8 and BAX within 6 hours in combination with 5-FU compared to 5-FU treatment alone. Our study reveals a new mechanism of CAPE which is related to the inhibition of human dihydroorotate dehydrogenase (HsDHODH) with an IC50 of 120.7 ± 6.8 µM, by bound to the ubiquinone-binding site of the enzyme and could be responsible for inducing extrinsic and intrinsic apoptosis. Conclusion: This study demonstrated the cytotoxicity of CAPE potential to induce apoptosis of breast cancer MCF-7 cell line single and cytotoxic-cytostatic combination with 5-FU. Therefore, further studies to develop CAPE and its derivatives will be required to discover new candidates for breast cancer agents.

4.
J Gen Appl Microbiol ; 67(3): 114-117, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33814517

ABSTRACT

Two Indonesian fungi Aspergillus assiutensis BioMCC-f.T.7495 and Penicillium pedernalense BioMCC-f.T.5350 along with a Japanese fungus Hypomyces pseudocorticiicola FKI-9008 have been found to produce gentisyl alcohol (1), which inhibits Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) with an IC50 value of 3.4 µM. Another Indonesian fungus, Penicillium citrinum BioMCC-f.T.6730, produced an analog of 1, homogentisic acid (4), which also inhibits PfDHODH with an IC50 value of 47.6 µM.


Subject(s)
Benzyl Alcohols/pharmacology , Enzyme Inhibitors/pharmacology , Fungi/chemistry , Homogentisic Acid/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/enzymology , Antimalarials/chemistry , Antimalarials/isolation & purification , Antimalarials/pharmacology , Benzyl Alcohols/chemistry , Benzyl Alcohols/isolation & purification , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Fungi/classification , Homogentisic Acid/chemistry , Homogentisic Acid/isolation & purification , Inhibitory Concentration 50 , Molecular Structure , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors
5.
Genes (Basel) ; 11(12)2020 12 07.
Article in English | MEDLINE | ID: mdl-33297567

ABSTRACT

Dihydroorotate dehydrogenase (DHODH) is a mitochondrial monotopic membrane protein that plays an essential role in the pyrimidine de novo biosynthesis and electron transport chain pathways. In Eimeria tenella, an intracellular apicomplexan parasite that causes the most severe form of chicken coccidiosis, the activity of pyrimidine salvage pathway at the intracellular stage is negligible and it relies on the pyrimidine de novo biosynthesis pathway. Therefore, the enzymes of the de novo pathway are considered potential drug target candidates for the design of compounds with activity against this parasite. Although, DHODHs from E. tenella (EtDHODH), Plasmodium falciparum (PfDHODH), and human (HsDHODH) show distinct sensitivities to classical DHODH inhibitors, in this paper, we identify ferulenol as a potent inhibitor of both EtDHODH and HsDHODH. Additionally, we report the crystal structures of EtDHODH and HsDHODH in the absence and presence of ferulenol. Comparison of these enzymes showed that despite similar overall structures, the EtDHODH has a long insertion in the N-terminal helix region that assumes a disordered configuration. In addition, the crystal structures revealed that the ferulenol binding pocket of EtDHODH is larger than that of HsDHODH. These differences can be explored to accelerate structure-based design of inhibitors specifically targeting EtDHODH.


Subject(s)
Coccidiosis , Drug Delivery Systems , Eimeria tenella , Oxidoreductases Acting on CH-CH Group Donors , Protozoan Proteins , Coccidiosis/drug therapy , Coccidiosis/enzymology , Coccidiosis/genetics , Dihydroorotate Dehydrogenase , Eimeria tenella/enzymology , Eimeria tenella/genetics , Humans , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protein Domains , Protein Structure, Secondary , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
6.
Oncol Lett ; 20(5): 274, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33014153

ABSTRACT

Bee products are best known as one of the beneficial natural products providing multiple pharmacological effects, such as antimicrobial, antiviral, anti-inflammatory and anticancer effects. The present study aimed to identify potent products derived from the stingless bee Trigona spp. from Luwu Utara (South Sulawesi, Indonesia), focussing on the water-soluble extract of propolis and bee pollen, against the proliferation of the human breast cancer MCF-7 cell line. The results from DPPH (2,2-diphenyl-1-picrylhydrazyl) method of antioxidant assay revealed that water-soluble propolis and bee pollen had high antioxidant activity, with half-maximal effective concentrations against DPPH radicals of 1.3 and 0.4 mg/ml, respectively. Additionally, water-soluble propolis and bee pollen exhibited a significant antiproliferative activity in MCF-7 cells, with IC50 values of 10.8±0.06 and 18.6±0.03 mg/ml, respectively (P<0.05). Significant cytotoxic effects were observed after 24 h of treatment via microscopic and flow cytometric analysis, where a morphological change toward late apoptosis was observed. By contrast, honey had low antioxidant activity and no antiproliferative effect in MCF-7 cells. The water-soluble propolis also exerted its antiproliferative effect in the human keratinocyte HaCaT cell line. The antiproliferative activity was similar (P>0.05) at 24 and 48 h of treatment, with IC50 at 2.7±0.06 mg/ml and <0.4 mg/ml, respectively. Notably, bee pollen was less toxic to HaCaT cells after 24 h of treatment than the water-soluble propolis, with IC50>50 mg/ml. Its antiproliferative activity was significantly increased after 48 h of treatment, with IC50 at 9.6±0.07 mg/ml (P<0.05). In addition, similar to other poplar propolis, the high-performance liquid chromatography-ultraviolet and electrospray ionisation mass spectrometry analyses revealed that caffeic acid phenethyl ester was not the main bioactive compound of the samples examined. Furthermore, two major proteins (between ~50 and 75 kDa) were identified in the water-soluble propolis and bee pollen. The present results suggested that water-soluble propolis and bee pollen may have the potential to be elaborated further as a breast anticancer therapy.

7.
J Gen Appl Microbiol ; 66(5): 273-278, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32669511

ABSTRACT

An Indonesian soil fungus, Talaromyces pinophilus BioMCC-f.T.3979 was cultured to find novel scaffolds of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. We obtained altenusin (1), which inhibits PfDHODH, with an IC50 value of 5.9 µM, along with other metabolites: mitorubrinol (2) and mitorubrinic acid (3). Compounds 1 and 2 inhibited PfDHODH but displayed no activity against the human orthologue. They also inhibited P. falciparum 3D7 cell growth in vitro. Compound 3 showed little PfDHODH inhibitory activity or cell growth inhibitory activity.


Subject(s)
Antimalarials/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Talaromyces/chemistry , Antimalarials/chemistry , Antimalarials/isolation & purification , Benzoates/chemistry , Benzoates/isolation & purification , Benzoates/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/isolation & purification , Biphenyl Compounds/pharmacology , Cell Line , Cell Survival/drug effects , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Humans , Plasmodium falciparum/enzymology , Plasmodium falciparum/growth & development , Soil Microbiology , Species Specificity
8.
Front Pharmacol ; 9: 997, 2018.
Article in English | MEDLINE | ID: mdl-30233375

ABSTRACT

Human dihydroorotate dehydrogenase (HsDHODH) is a key enzyme of pyrimidine de novo biosynthesis pathway. It is located on the mitochondrial inner membrane and contributes to the respiratory chain by shuttling electrons to the ubiquinone pool. We have discovered ascofuranone (1), a natural compound produced by Acremonium sclerotigenum, and its derivatives are a potent class of HsDHODH inhibitors. We conducted a structure-activity relationship study and have identified functional groups of 1 that are essential for the inhibition of HsDHODH enzymatic activity. Furthermore, the binding mode of 1 and its derivatives to HsDHODH was demonstrated by co-crystallographic analysis and we show that these inhibitors bind at the ubiquinone binding site. In addition, the cytotoxicities of 1 and its potent derivatives 7, 8, and 9 were studied using human cultured cancer cells. Interestingly, they showed selective and strong cytotoxicity to cancer cells cultured under microenvironment (hypoxia and nutrient-deprived) conditions. The selectivity ratio of 8 under this microenvironment show the most potent inhibition which was over 1000-fold higher compared to that under normal culture condition. Our studies suggest that under microenvironment conditions, cancer cells heavily depend on the pyrimidine de novo biosynthesis pathway. We also provide the first evidence that 1 and its derivatives are potential lead candidates for drug development which target the HsDHODH of cancer cells living under a tumor microenvironment.

9.
Helicobacter ; 23(2): e12470, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29488678

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) infection causes various gastrointestinal diseases including gastric cancer. Hence, eradication of this infection could prevent these diseases. The most popular first-line treatment protocol to eradicate H. pylori is termed "triple therapy" and consists of a proton pump inhibitor (PPI), clarithromycin, and amoxicillin or metronidazole. However, the antibiotics used to treat H. pylori infection are hindered by the antibiotics-resistant bacteria and by their antimicrobial activity against intestinal bacteria, leading to side effects. Therefore, an alternative treatment with fewer adverse side effects is urgently required to improve the overall eradication rate of H. pylori. OBJECTIVE: The aim of this study was to assess the effectiveness and mechanism of action of an antitumor agent, intervenolin, and its derivatives as an agent for the treatment of H. pylori infection. RESULTS: We demonstrate that intervenolin, and its derivatives showed selective anti-H. pylori activity, including antibiotic-resistant strains, without any effect on intestinal bacteria. We showed that dihydroorotate dehydrogenase, a key enzyme for de novo pyrimidine biosynthesis, is a target and treatment with intervenolin or its derivatives decreased the protein and mRNA levels of H. pylori urease, which protects H. pylori against acidic conditions in the stomach. Using a mouse model of H. pylori infection, oral monotherapy with the intervenolin derivative AS-1934 had a stronger anti-H. pylori effect than the triple therapy commonly used worldwide to eradicate H. pylori. CONCLUSION: AS-1934 has potential advantages over current treatment options for H. pylori infection.


Subject(s)
Helicobacter Infections/drug therapy , Quinolones/therapeutic use , Anti-Bacterial Agents/therapeutic use , Helicobacter pylori/drug effects , Helicobacter pylori/pathogenicity , Humans , Treatment Outcome
10.
Biochim Biophys Acta Bioenerg ; 1859(3): 191-200, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29269266

ABSTRACT

Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc1 complex inhibitor.


Subject(s)
Mitochondrial Membranes/enzymology , Oxidoreductases/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Antimalarials/pharmacology , Atovaquone/pharmacology , Biocatalysis/drug effects , Coumarins/pharmacology , Drug Synergism , Enzyme Inhibitors/pharmacology , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Malates/metabolism , Mitochondrial Membranes/drug effects , Oxaloacetic Acid/metabolism , Oxidoreductases/antagonists & inhibitors , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...