Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
RSC Adv ; 11(19): 11702-11713, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-35423612

ABSTRACT

The interfacial contact between TiO2 and graphitic carbon in a hybrid composite plays a critical role in electron transfer behavior, and in turn, its photocatalytic efficiency. Herein, we report a new approach for improving the interfacial contact and delaying charge carrier recombination in the hybrid by wrapping short single-wall carbon nanotubes (SWCNTs) on TiO2 particles (100 nm) via a hydration-condensation technique. Short SWCNTs with an average length of 125 ± 90 nm were obtained from an ultrasonication-assisted cutting process of pristine SWCNTs (1-3 µm in length). In comparison to conventional TiO2-SWCNT composites synthesized from long SWCNTs (1.2 ± 0.7 µm), TiO2 wrapped with short SWCNTs showed longer lifetimes of photogenerated electrons and holes, as well as a superior photocatalytic activity in the gas-phase degradation of acetaldehyde. In addition, upon comparison with a TiO2-nanographene "quasi-core-shell" structure, TiO2-short SWCNT structures offer better electron-capturing efficiency and slightly higher photocatalytic performance, revealing the impact of the dimensions of graphitic structures on the interfacial transfer of electrons and light penetration to TiO2. The engineering of the TiO2-SWCNT structure is expected to benefit photocatalytic degradation of other volatile organic compounds, and provide alternative pathways to further improve the efficiency of other carbon-based photocatalysts.

2.
RSC Adv ; 9(48): 27927-27936, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-35530471

ABSTRACT

Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous Fe3O4 and reduced-graphene-oxide (Fe3O4@RGO) anode materials. We demonstrate the relationship between the media pH and Fe3O4@RGO nanostructure, in terms of dispersion state of PMAA-stabilized Fe3O4@GO sheets at different surrounding pH values, and porosity of the resulted Fe3O4@RGO anode. The anode shows a high surface area of 338.8 m2 g-1 with a large amount of 10-40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, Fe3O4@RGO delivers high specific-charge capacities of 740 mA h g-1 to 200 mA h g-1 at various current densities of 0.5 A g-1 to 10 A g-1, and an excellent capacity-retention capability even after long-term charge-discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of Fe3O4-coated graphene materials-which is a major impediment in the synthesis process-and provides a facile synthetic pathway for depositing Fe3O4 and other metal oxide nanoparticles on highly porous RGO.

3.
ACS Nano ; 12(12): 11756-11784, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30516055

ABSTRACT

Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.

4.
Sci Rep ; 8(1): 4349, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29531239

ABSTRACT

Growth of high quality, dense carbon nanotube (CNT) arrays via catalytic chemical vapor deposition (CCVD) has been largely limited to catalysts supported on amorphous alumina or silica. To overcome the challenge of conducting CNT growth from catalysts supported on conductive substrates, we explored a two-step surface modification that involves ion beam bombardment to create surface porosity and deposition of a thin AlxOy barrier layer to make the surface basic. To test the efficacy of our approach on a non-oxide support, we focus on modification of 316 stainless steel (SS), a well-known inactive substrate for CNT growth. Our study reveals that ion beam bombardment of SS has the ability to reduce film thickness of the AlxOy barrier layer required to grow CNTs from Fe catalysts to [Formula: see text] 5 nm, which is within the threshold for the substrate to remain conductive. Additionally, catalysts supported on ion beam-damaged SS with the same AlxOy thickness show improved particle formation, catalyst stability, and CNT growth efficiency, as well as producing CNTs with higher quality and density. Under optimal reaction conditions, this modification approach can lead to CNT growth on other nontraditional substrates and potentially benefit applications that require CNTs be grown on a conductive substrate.

5.
Nanoscale ; 8(27): 13476-87, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27353432

ABSTRACT

Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst pretreatment and/or preheating of the carbon feedstock. The efficiency of the process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe-Cu catalysts even at temperatures as low as 400 °C - a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The grown CNTs exhibit a straight morphology with hollow interior and parallel graphitic planes along the tube walls. The apparent activation energies for CNT carpet growth on Fe and Fe-Cu catalysts are 0.71 and 0.54 eV, respectively. The synergistic effect of Fe and Cu show a strong dependence on the growth temperature, with Cu being more influential at temperatures higher than 450 °C. The low activation energies and long catalyst lifetimes observed are rationalized based on the unique composition of FTS-GP and Gibbs free energies for the decomposition reactions of the hydrocarbon components. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability.

6.
Nanoscale ; 8(5): 2927-36, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26781333

ABSTRACT

There is significant interest in broadening the type of catalyst substrates that support the growth of high-quality carbon nanotube (CNT) carpets. In this study, ion beam bombardment has been utilized to modify catalyst substrates for CNT carpet growth. Using a combination of contact angle measurements (CAMs) and X-ray reflectivity (XRR) for the first time, new correlations between the physicochemical properties of pristine and engineered catalyst substrates and CNT growth behavior have been established. The engineered surfaces obtained after exposure to different degrees of ion beam damage have distinct physicochemical properties (porosity, layer thickness, and acid-base properties). The CAM data were analyzed using the van Oss-Chaudhury-Good model, enabling the determination of the acid-base properties of the substrate surfaces. For the XRR data, a Fourier analysis of the interference patterns enabled extraction of layer thickness, while the atomic density and interfacial roughness were extracted by analyzing the amplitude of the interference oscillations. The dramatic transformation of the substrate from "inactive" to "active" is attributed to a combined effect of substrate porosity or damage depth and Lewis basicity. The results reveal that the efficiency of catalyst substrates can be further improved by increasing the substrate basicity, if the minimum surface porosity is established. This study advances the use of a non-thermochemical approach for catalyst substrate engineering, as well as demonstrates the combined utility of CAM and XRR as a powerful, nondestructive, and reliable tool for rational catalyst design.

7.
Nanoscale ; 5(7): 2642-6, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23446360

ABSTRACT

A simple, reliable, and non-destructive approach based on contact angle measurements is described for predicting the activity of catalyst supports in carbon nanotube (CNT) carpet growth. The basic component of the surface free energy of different alumina supports - determined from the van Oss-Good-Chaudhury model and the Young-Dupré equation - was found to correlate with the activity of Fe catalyst during water-assisted CVD growth of CNT carpets.

8.
ACS Nano ; 4(2): 895-904, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20131855

ABSTRACT

We have studied the lifetime, activity, and evolution of Fe catalysts supported on different types of alumina: (a) sputter deposited alumina films (sputtered/Fe), (b) electron-beam deposited alumina films (e-beam/Fe), (c) annealed e-beam deposited alumina films (annealed e-beam/Fe), (d) alumina films deposited by atomic layer deposition (ALD/Fe), and (e) c-cut sapphire (sapphire/Fe). We show that the catalytic behavior, Ostwald ripening, and subsurface diffusion rates of Fe catalyst supported on alumina during water-assisted growth or "supergrowth" of single-walled carbon nanotube (SWNT) carpets are strongly influenced by the porosity of the alumina support. The catalytic activity increases in the following order: sapphire/Fe < annealed e-beam/Fe < ALD/Fe < e-beam/Fe < sputtered/Fe. With a combination of microscopic and spectroscopic characterization, we further show that the Ostwald ripening rates of the catalysts and the porosity of the alumina support correlate with the lifetime and activity of the catalysts. Specifically, our results reveal that SWNT carpet growth is maximized by very low Ostwald ripening rates, mild subsurface diffusion rates, and high porosity, which is best achieved in the sputtered/Fe catalyst. These results not only emphasize the connection between catalytic activity and particle stability during growth, but guide current efforts aimed at rational design of catalysts for enhanced and controlled SWNT carpet growth.

9.
Nano Lett ; 9(1): 44-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19046079

ABSTRACT

The Ostwald ripening behavior of Fe catalyst films deposited on thin alumina supporting layers is demonstrated as a function of thermal annealing in H2 and H2/H2O. The addition of H2O in super growth of single-walled carbon nanotube carpets is observed to inhibit Ostwald ripening due to the ability of oxygen and hydroxyl species to reduce diffusion rates of catalyst atoms. This work shows the impact of typical carpet growth environments on catalyst film evolution and the role Ostwald ripening may play in the termination of carpet growth.


Subject(s)
Crystallization/methods , Hydrogen/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Water/chemistry , Colloids/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
10.
Nanotechnology ; 19(12): 125703, 2008 Mar 26.
Article in English | MEDLINE | ID: mdl-21817744

ABSTRACT

A technique of measuring contact resistance between an individual nanotube and a deposited metallic film is described. Using laser ablation to sequentially shorten the contact length between a nanotube and the evaporated metallic film, the linear resistivity of the nanotube as well as the specific contact resistivity between the nanotube and metallic film can be determined. This technique can be generally used to measure the specific contact resistance that develops between a metallic film and a variety of different nanowires and nanotubes.

11.
Chem Commun (Camb) ; (27): 2899-901, 2006 Jul 21.
Article in English | MEDLINE | ID: mdl-17007410

ABSTRACT

Using a shielded growth approach and N2-annealed, nearly monodispersed Fe2O3 nanoparticles synthesized by interdendritic stabilization of Fe3+ species within fourth-generation poly(amidoamine) dendrimers, carbon nanotubes and nanofibers were successfully grown at low substrate temperatures (200-400 degrees C) by microwave plasma-enhanced chemical vapor deposition.

12.
J Phys Chem B ; 110(22): 10636-44, 2006 Jun 08.
Article in English | MEDLINE | ID: mdl-16771309

ABSTRACT

A fourth-generation (G4) poly(amidoamine) (PAMAM) dendrimer (G4-NH2) has been used as a template to deliver nearly monodispersed catalyst nanoparticles to SiO2/Si, Ti/Si, sapphire, and porous anodic alumina (PAA) substrates. Fe2O3 nanoparticles obtained after calcination of the immobilized Fe3+/G4-NH2 composite served as catalytic "seeds" for the growth of single-wall carbon nanotubes (SWNTs) by microwave plasma-enhanced CVD (PECVD). To surmount the difficulty associated with SWNT growth via PECVD, reaction conditions that promote the stabilization of Fe nanoparticles, resulting in enhanced SWNT selectivity and quality, have been identified. In particular, in situ annealing of Fe catalyst in an N2 atmosphere was found to improve SWNT selectivity and quality. H2 prereduction at 900 degrees C for 5 min was also found to enhance SWNT selectivity and quality for SiO2/Si supported catalyst, albeit of lower quality for sapphire supported catalyst. The application of positive dc bias voltage (+200 V) during SWNT growth was shown to be very effective in removing amorphous carbon impurities while enhancing graphitization, SWNT selectivity, and vertical alignment. The results of this study should promote the use of exposed Fe nanoparticles supported on different substrates for the growth of high-quality SWNTs by PECVD.

13.
J Phys Chem B ; 109(7): 2645-56, 2005 Feb 24.
Article in English | MEDLINE | ID: mdl-16851270

ABSTRACT

Fe-substituted MCM-41 molecular sieves with ca. 1, 2, and 3 wt % Fe were synthesized hydrothermally using different sources of colloidal silica (HiSil and Cab-O-Sil) and characterized by ICP, XRD, N2 physisorption, UV-vis, EPR, TPR, and X-ray absorption. Catalysts synthesized from Cab-O-Sil showed higher structural order and stability than those from HiSil. The local environment of Fe in the mesoporous material as studied by UV-vis reveals the dominance of framework Fe in all the as-synthesized Fe-MCM-41 samples. Dislodgement of some Fe species to extraframework location occurs upon calcination, and this effect is more severe for Fe-MCM-41 (2 wt %) and Fe-MCM-41 (3 wt %), as confirmed by EPR and X-ray absorption. These materials have been used as catalytic templates for the production of carbon nanotubes (CNTs) by acetylene pyrolysis at atmospheric pressure. A relationship between the Fe loading in MCM-41 and the carbon species produced during this reaction has been established. Using our optimized conditions for this system, Fe-MCM-41 with ca. 2 wt % Fe showed the best results with particularly high selectivity for single-wall carbon nanotube (SWNT) production. This catalyst was selective for carbon nanotubes with a low amount of amorphous carbon for a narrow range of temperatures from 1073 to 1123 K. To account for the different selectivity of these catalysts for CNTs production, the local environment and chemical state of Fe in the used catalyst was further probed by X-band EPR.

SELECTION OF CITATIONS
SEARCH DETAIL
...