Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Med Microbiol ; 291(6-7): 531-5, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11890554

ABSTRACT

Cholera toxin and E. coli heat-labile enterotoxin are structurally homologous proteins comprised of an enzymatically active A-subunit and five B-subunits that bind with high affinity to GM1-ganglioside receptors found on the surface of mammalian cells. The B-subunits have long been thought of simply as trafficking vehicles that trigger entry and subsequent delivery of the 'toxic' A-subunit into cells. Indeed, such is the capacity of the B-subunits to enter cells, that they have been developed as generic carriers for attachment and delivery of a variety of peptides into mammalian cells. However, the B-subunits also appear to possess discrete 'signalling functions', that induce both transcription factor and cell activation. These are thought to be directly responsible for the potent immunomodulatory properties of the B-subunits, and have resulted in their use as adjuvants and as agents to suppress inflammatory immune disorders. The relationship between the signalling properties of the B-subunits and their capacity to act as trafficking vehicles has remained unclear. In an effort to understand the structural requirements for these two functions, a set of mutant B-subunits, with amino acid substitutions at position His-57, have been generated and studied. Importantly, such mutant B-subunits retain an ability to bind with high affinity to GM1 and to traffic into cells, but have entirely lost their capacity to activate immune cell populations. Thus, while binding via GM1 appears to be sufficient to trigger cellular uptake it is not sufficient to activate signal transduction. The His-57 region is therefore speculated to be actively engaged in triggering signalling events, possibly via cognate interaction with other cell surface molecules.


Subject(s)
Cholera Toxin/metabolism , Enterotoxins/metabolism , Amino Acid Substitution , Biological Transport , Cholera Toxin/chemistry , Cholera Toxin/genetics , Enterotoxins/chemistry , G(M1) Ganglioside/metabolism , Mutation , Signal Transduction , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...