Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nat Aging ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877129
2.
iScience ; 27(6): 109834, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38784016

ABSTRACT

Fasting has emerged as a potent means of preserving tissue function with age in multiple model organisms. However, our understanding of the relationship between food removal and long-term health is incomplete. Here, we demonstrate that in the nematode worm Caenorhabditis elegans, a single period of early-life fasting is sufficient to selectively enhance HSF-1 activity, maintain proteostasis capacity and promote longevity without compromising fecundity. These effects persist even when food is returned, and are dependent on the mitochondrial sirtuin, SIR-2.2 and the H3K27me3 demethylase, JMJD-3.1. We find that increased HSF-1 activity upon fasting is associated with elevated SIR-2.2 levels, decreased mitochondrial copy number and reduced H3K27me3 levels at the promoters of HSF-1 target genes. Furthermore, consistent with our findings in worms, HSF-1 activity is also enhanced in muscle tissue from fasted mice, suggesting that the potentiation of HSF-1 is a conserved response to food withdrawal.

5.
Nat Aging ; 4(1): 5, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38216743
6.
Nat Aging ; 3(12): 1471, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38057387
7.
Nat Aging ; 3(11): 1316, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37946046
10.
Cell Rep ; 41(8): 111690, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36417880

ABSTRACT

The age-related loss of protein homeostasis (proteostasis) is at the heart of numerous neurodegenerative diseases. Therefore, finding ways to preserve proteome integrity in aged cells may be a powerful way to promote long-term health. Here, we show that reducing the activity of a highly conserved mitochondrial outer membrane protein, MTCH-1/MTCH2, suppresses age-related proteostasis collapse in Caenorhabditis elegans without disrupting development, growth, or reproduction. Loss of MTCH-1 does not influence proteostasis capacity in aged tissues through previously described pathways but instead operates by reducing CED-4 levels. This results in the sequestration of HSP-90 by inactive CED-3, which in turn leads to an increase in HSF-1 activity, transcriptional remodeling of the proteostasis network, and maintenance of proteostasis capacity with age. Together, our findings reveal a role for programmed cell death factors in determining proteome health and suggest that inhibiting MTCH-1 activity in adulthood may safeguard the aging proteome and suppress age-related diseases.


Subject(s)
Proteome , Proteostasis , Animals , Proteostasis/physiology , Proteome/metabolism , Protein Folding , Caenorhabditis elegans/metabolism , Apoptosis
11.
Aging (Albany NY) ; 14(21): 8661-8687, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36367773

ABSTRACT

There is accumulating evidence that interfering with the basic aging mechanisms can enhance healthy longevity. The interventional/therapeutic strategies targeting multiple aging hallmarks could be more effective than targeting one hallmark. While health-promoting qualities of marine oils have been extensively studied, the underlying molecular mechanisms are not fully understood. Lipid extracts from Antarctic krill are rich in long-chain omega-3 fatty acids choline, and astaxanthin. Here, we used C. elegans and human cells to investigate whether krill oil promotes healthy aging. In a C. elegans model of Parkinson´s disease, we show that krill oil protects dopaminergic neurons from aging-related degeneration, decreases alpha-synuclein aggregation, and improves dopamine-dependent behavior and cognition. Krill oil rewires distinct gene expression programs that contribute to attenuating several aging hallmarks, including oxidative stress, proteotoxic stress, senescence, genomic instability, and mitochondrial dysfunction. Mechanistically, krill oil increases neuronal resilience through temporal transcriptome rewiring to promote anti-oxidative stress and anti-inflammation via healthspan regulating transcription factors such as SNK-1. Moreover, krill oil promotes dopaminergic neuron survival through regulation of synaptic transmission and neuronal functions via PBO-2 and RIM-1. Collectively, krill oil rewires global gene expression programs and promotes healthy aging via abrogating multiple aging hallmarks, suggesting directions for further pre-clinical and clinical explorations.


Subject(s)
Dopaminergic Neurons , Euphausiacea , Humans , Animals , Transcriptome , Caenorhabditis elegans , Plant Oils , Dopamine
12.
Mol Neurobiol ; 59(9): 5612-5629, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35739408

ABSTRACT

Alzheimer's disease (AD) is a common and devastating disease characterized by pathological aggregations of beta-amyloid (Aß) plaques extracellularly, and Tau tangles intracellularly. While our understandings of the aetiologies of AD have greatly expanded over the decades, there is no drug available to stop disease progression. Here, we demonstrate the potential of Passiflora edulis (P. edulis) pericarp extract in protecting against Aß-mediated neurotoxicity in mammalian cells and Caenorhabditis elegans (C. elegans) models of AD. We show P. edulis pericarp protects against memory deficit and neuronal loss, and promotes longevity in the Aß model of AD via stimulation of mitophagy, a selective cellular clearance of damaged and dysfunctional mitochondria. P. edulis pericarp also restores memory and increases neuronal resilience in a C. elegans Tau model of AD. While defective mitophagy-induced accumulation of damaged mitochondria contributes to AD progression, P. edulis pericarp improves mitochondrial quality and homeostasis through BNIP3/DCT1-dependent mitophagy and SOD-3-dependent mitochondrial resilience, both via increased nuclear translocation of the upstream transcriptional regulator FOXO3/DAF-16. Further studies to identify active molecules in P. edulis pericarp that could maintain neuronal mitochondrial homeostasis may enable the development of potential drug candidates for AD.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Passiflora , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Transcription Factors/metabolism , Homeostasis , Humans , Mammals/metabolism , Mitochondria/metabolism , Passiflora/metabolism
13.
Nat Aging ; 1(8): 634-650, 2021 08.
Article in English | MEDLINE | ID: mdl-34901876

ABSTRACT

Autophagy is a fundamental cellular process that eliminates molecules and subcellular elements, including nucleic acids, proteins, lipids and organelles, via lysosome-mediated degradation to promote homeostasis, differentiation, development and survival. While autophagy is intimately linked to health, the intricate relationship among autophagy, aging and disease remains unclear. This Review examines several emerging features of autophagy and postulates how they may be linked to aging as well as to the development and progression of disease. In addition, we discuss current preclinical evidence arguing for the use of autophagy modulators as suppressors of age-related pathologies such as neurodegenerative diseases. Finally, we highlight key questions and propose novel research avenues that will likely reveal new links between autophagy and the hallmarks of aging. Understanding the precise interplay between autophagy and the risk of age-related pathologies across organisms will eventually facilitate the development of clinical applications that promote long-term health.


Subject(s)
Healthy Aging , Neurodegenerative Diseases , Humans , Autophagy , Aging/metabolism , Lysosomes/metabolism , Neurodegenerative Diseases/metabolism
14.
Nat Commun ; 12(1): 6101, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671015

ABSTRACT

The mechanisms involved in programmed or damage-induced removal of mitochondria by mitophagy remains elusive. Here, we have screened for regulators of PRKN-independent mitophagy using an siRNA library targeting 197 proteins containing lipid interacting domains. We identify Cyclin G-associated kinase (GAK) and Protein Kinase C Delta (PRKCD) as regulators of PRKN-independent mitophagy, with both being dispensable for PRKN-dependent mitophagy and starvation-induced autophagy. We demonstrate that the kinase activity of both GAK and PRKCD are required for efficient mitophagy in vitro, that PRKCD is present on mitochondria, and that PRKCD facilitates recruitment of ULK1/ATG13 to early autophagic structures. Importantly, we demonstrate in vivo relevance for both kinases in the regulation of basal mitophagy. Knockdown of GAK homologue (gakh-1) in C. elegans or knockout of PRKCD homologues in zebrafish led to significant inhibition of basal mitophagy, highlighting the evolutionary relevance of these kinases in mitophagy regulation.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Mitophagy , Protein Kinase C-delta/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Autophagy , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Proteins/metabolism , Caenorhabditis elegans , Cell Line, Tumor , Deferiprone/pharmacology , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Lysosomes/metabolism , Mitochondria/metabolism , Mitophagy/drug effects , Protein Kinase C-delta/antagonists & inhibitors , Protein Kinase C-delta/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Zebrafish
15.
Brain ; 144(9): 2759-2770, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34428276

ABSTRACT

The molecular link between amyloid-ß plaques and neurofibrillary tangles, the two pathological hallmarks of Alzheimer's disease, is still unclear. Increasing evidence suggests that amyloid-ß peptide activates multiple regulators of cell cycle pathways, including transcription factors CDKs and E2F1, leading to hyperphosphorylation of tau protein. However, the exact pathways downstream of amyloid-ß-induced cell cycle imbalance are unknown. Here, we show that PAX6, a transcription factor essential for eye and brain development which is quiescent in adults, is increased in the brains of patients with Alzheimer's disease and in APP transgenic mice, and plays a key role between amyloid-ß and tau hyperphosphorylation. Downregulation of PAX6 protects against amyloid-ß peptide-induced neuronal death, suggesting that PAX6 is a key executor of the amyloid-ß toxicity pathway. Mechanistically, amyloid-ß upregulates E2F1, followed by the induction of PAX6 and c-Myb, while Pax6 is a direct target for both E2F1 and its downstream target c-Myb. Furthermore, PAX6 directly regulates transcription of GSK-3ß, a kinase involved in tau hyperphosphorylation and neurofibrillary tangles formation, and its phosphorylation of tau at Ser356, Ser396 and Ser404. In conclusion, we show that signalling pathways that include CDK/pRB/E2F1 modulate neuronal death signals by activating downstream transcription factors c-Myb and PAX6, leading to GSK-3ß activation and tau pathology, providing novel potential targets for pharmaceutical intervention.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/toxicity , PAX6 Transcription Factor/metabolism , Peptide Fragments/toxicity , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cells, Cultured , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation/drug effects , Phosphorylation/physiology , Signal Transduction/drug effects , Signal Transduction/physiology
16.
Aging Dis ; 12(3): 852-867, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34094647

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia in elderly that serves to be a formidable socio-economic and healthcare challenge in the 21st century. Mitochondrial dysfunction and impairment of mitochondrial-specific autophagy, namely mitophagy, have emerged as important components of the cellular processes contributing to the development of AD pathologies, namely amyloid-ß plaques (Aß) and neurofibrillary tangles (NFT). Here, we highlight the recent advances in the association between impaired mitophagy and AD, as well as delineate the potential underlying mechanisms. Furthermore, we conduct a systematic review the current status of mitophagy modulators and analyzed their relevant mechanisms, evaluating on their advantages, limitations and current applications in clinical trials for AD patients. Finally, we describe how deep learning may be a promising method to rapid and efficient discovery of mitophagy inducers as well as general guidance for the workflow of the process.

17.
Ageing Res Rev ; 67: 101307, 2021 05.
Article in English | MEDLINE | ID: mdl-33621703

ABSTRACT

The entorhinal-hippocampal system contains distinct networks subserving declarative memory. This system is selectively vulnerable to changes of ageing and pathological processes. The entorhinal cortex (EC) is a pivotal component of this memory system since it serves as the interface between the neocortex and the hippocampus. EC is heavily affected by the proteinopathies of Alzheimer's disease (AD). These appear in a stereotypical spatiotemporal manner and include increased levels of intracellular amyloid-beta Aß (iAß), parenchymal deposition of Aß plaques, and neurofibrillary tangles (NFTs) containing abnormally processed Tau. Increased levels of iAß and the formation of NFTs are seen very early on in a population of neurons belonging to EC layer II (EC LII), and recent evidence leads us to believe that this population is made up of highly energy-demanding reelin-positive (RE+) projection neurons. Mitochondria are fundamental to the energy supply, metabolism, and plasticity of neurons. Evidence from AD postmortem brain tissues supports the notion that mitochondrial dysfunction is one of the initial pathological events in AD, and this is likely to take place in the vulnerable RE + EC LII neurons. Here we review and discuss these notions, anchored to the anatomy of AD, and formulate a hypothesis attempting to explain the vulnerability of RE + EC LII neurons to the formation of NFTs. We attempt to link impaired mitochondrial clearance to iAß and signaling involving both apolipoprotein 4 and reelin, and argue for their relevance to the formation of NFTs specifically in RE + EC LII neurons during the prodromal stages of AD. We believe future studies on these interactions holds promise to advance our understanding of AD etiology and provide new ideas for drug development.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Mitophagy , Neurofibrillary Tangles , Neurons , Reelin Protein , tau Proteins
19.
EMBO Rep ; 21(11): e51652, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33155437

ABSTRACT

Mitochondrial homeostasis is necessary for the maintenance of cellular function and neuronal survival. Mitochondrial quality is tightly regulated by mitophagy, in which defective/superfluous mitochondria are degraded and recycled. Here, Hara et al demonstrate that induction of mitophagy via iron depletion suppresses the development of hepatocellular carcinoma (HCC). This work suggests turning up mitophagy as a potential therapeutic strategy against liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Ferritins , Humans , Iron/metabolism , Liver Neoplasms/genetics , Mitophagy
20.
Ageing Res Rev ; 64: 101174, 2020 12.
Article in English | MEDLINE | ID: mdl-32971255

ABSTRACT

One of the key issues facing public healthcare is the global trend of an increasingly ageing society which continues to present policy makers and caregivers with formidable healthcare and socio-economic challenges. Ageing is the primary contributor to a broad spectrum of chronic disorders all associated with a lower quality of life in the elderly. In 2019, the Chinese population constituted 18 % of the world population, with 164.5 million Chinese citizens aged 65 and above (65+), and 26 million aged 80 or above (80+). China has become an ageing society, and as it continues to age it will continue to exacerbate the burden borne by current family and public healthcare systems. Major healthcare challenges involved with caring for the elderly in China include the management of chronic non-communicable diseases (CNCDs), physical frailty, neurodegenerative diseases, cardiovascular diseases, with emerging challenges such as providing sufficient dental care, combating the rising prevalence of sexually transmitted diseases among nursing home communities, providing support for increased incidences of immune diseases, and the growing necessity to provide palliative care for the elderly. At the governmental level, it is necessary to make long-term strategic plans to respond to the pressures of an ageing society, especially to establish a nationwide, affordable, annual health check system to facilitate early diagnosis and provide access to affordable treatments. China has begun work on several activities to address these issues including the recent completion of the of the Ten-year Health-Care Reform project, the implementation of the Healthy China 2030 Action Plan, and the opening of the National Clinical Research Center for Geriatric Disorders. There are also societal challenges, namely the shift from an extended family system in which the younger provide home care for their elderly family members, to the current trend in which young people are increasingly migrating towards major cities for work, increasing reliance on nursing homes to compensate, especially following the outcomes of the 'one child policy' and the 'empty-nest elderly' phenomenon. At the individual level, it is important to provide avenues for people to seek and improve their own knowledge of health and disease, to encourage them to seek medical check-ups to prevent/manage illness, and to find ways to promote modifiable health-related behaviors (social activity, exercise, healthy diets, reasonable diet supplements) to enable healthier, happier, longer, and more productive lives in the elderly. Finally, at the technological or treatment level, there is a focus on modern technologies to counteract the negative effects of ageing. Researchers are striving to produce drugs that can mimic the effects of 'exercising more, eating less', while other anti-ageing molecules from molecular gerontologists could help to improve 'healthspan' in the elderly. Machine learning, 'Big Data', and other novel technologies can also be used to monitor disease patterns at the population level and may be used to inform policy design in the future. Collectively, synergies across disciplines on policies, geriatric care, drug development, personal awareness, the use of big data, machine learning and personalized medicine will transform China into a country that enables the most for its elderly, maximizing and celebrating their longevity in the coming decades. This is the 2nd edition of the review paper (Fang EF et al., Ageing Re. Rev. 2015).


Subject(s)
Long-Term Care , Quality of Life , Adolescent , Aged , Aged, 80 and over , Aging , China/epidemiology , Humans , Policy , Social Networking , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL
...