Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Mater ; 36(10): 5063-5076, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38828186

ABSTRACT

Solid-state polymer electrolytes can enable the safe operation of high energy density lithium metal batteries; unfortunately, they have low ionic conductivity and poor redox stability at electrode interfaces. Fluorinated ether polymer electrolytes are a promising approach because the ether units can solvate and conduct ions, while the fluorinated moieties can increase oxidative stability. However, current perfluoropolyether (PFPE) electrolytes exhibit deficient lithium-ion coordination and ion transport. Here, we incorporate cross-linked poly(ethylene glycol) (PEG) units within the PFPE matrix and increase the polymer blend electrolyte conductivity by 6 orders of magnitude as compared to pure PFPE at 60 °C from 1.55 × 10-11 to 2.26 × 10-5 S/cm. Blending varying ratios of PEG and PFPE induces microscale phase separation, and we show the impact of morphology on ion solvation and dynamics in the electrolyte. Spectroscopy and simulations show weak ion-PFPE interactions, which promote salt phase segregation into-and ion transport within-the PEG domain. These polymer electrolytes show promise for use in high-voltage lithium metal batteries with improved Li|Li cycling due to enhanced mechanical properties and high-voltage stability beyond 6 V versus Li/Li+. Our work provides insights into transport and stability in fluorinated polymer electrolytes for next-generation batteries.

2.
J Phys Chem Lett ; 14(4): 920-926, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36669142

ABSTRACT

CO2 electrochemical reduction (CO2R) in aprotic media is a promising alternative to aqueous electrocatalysis, as it minimizes the competing hydrogen evolution reaction while enhancing CO2 solubility. To date, state-of-the-art alkali salts used as electrolytes for selective aqueous CO2R are inaccessible in aprotic systems due to the inactivation of the electrode surface from carbonate deposition. In this work, we demonstrate that an acidic nonaqueous environment enables sustained CO2 electrochemical reduction with common alkali salts in dimethyl sulfoxide. Electrochemical and spectroscopic techniques show that at low pH carbonate buildup can be prevented, allowing CO2R to proceed. Product distribution with a copper electrode revealed up to 80% Faradaic efficiency for CO2R products, including carbon monoxide, formic acid, and methane. By understanding the mechanism for electrode inactivation in an aprotic medium and addressing that challenge with dilute acid addition, we pave the way toward the development of more efficient and selective electrolytes for CO2R.

3.
ACS Omega ; 7(21): 18131-18138, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664611

ABSTRACT

Successful transformation of carbon dioxide (CO2) into value-added products is of great interest, as it contributes in part to the circular carbon economy. Understanding chemical interactions that stabilize crucial reaction intermediates of CO2 is important, and in this contribution, we employ atom centered density matrix propagation (ADMP) molecular dynamics simulations to investigate interactions between CO2 - anion radicals with surrounding solvent molecules and electrolyte cations in both aqueous and nonaqueous environments. We show how different cations and solvents affect the stability of the CO2 - anion radical by examining its angle and distance to a coordinating cation in molecular dynamics simulations. We identify that the strength of CO2 - interactions can be tailored through choosing an appropriate cation and solvent combination. We anticipate that this fundamental understanding of cation/solvent interactions can facilitate the optimization of a chemical pathway that results from selective stabilization of a crucial reaction intermediate.

4.
ACS Cent Sci ; 7(7): 1232-1244, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34345673

ABSTRACT

Novel electrolytes are required for the commercialization of batteries with high energy densities such as lithium metal batteries. Recently, fluoroether solvents have become promising electrolyte candidates because they yield appreciable ionic conductivities, high oxidative stability, and enable high Coulombic efficiencies for lithium metal cycling. However, reported fluoroether electrolytes have similar molecular structures, and the influence of ion solvation in modifying electrolyte properties has not been elucidated. In this work, we synthesize a group of fluoroether compounds with reversed building block connectivity where ether moieties are sandwiched by fluorinated end groups. These compounds can support ionic conductivities as high as 1.3 mS/cm (30 °C, 1 M salt concentration). Remarkably, we report that the oxidative stability of these electrolytes increases with decreasing fluorine content, a phenomenon not observed in other fluoroethers. Using Raman and other spectroscopic techniques, we show that lithium ion solvation is controlled by fluoroether molecular structure, and the oxidative stability correlates with the "free solvent" fraction. Finally, we show that these electrolytes can be cycled repeatedly with lithium metal and other battery chemistries. Understanding the impact of building block connectivity and ionic solvation structure on electrochemical phenomena will facilitate the development of novel electrolytes for next-generation batteries.

5.
J Am Chem Soc ; 142(49): 20814-20827, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33226793

ABSTRACT

Capacity retention in lithium metal batteries needs to be improved if they are to be commercially viable, the low cycling stability and Li corrosion during storage of lithium metal batteries being even more problematic when there is no excess lithium in the cell. Herein, we develop in situ NMR metrology to study "anode-free" lithium metal batteries where lithium is plated directly onto a bare copper current collector from a LiFePO4 cathode. The methodology allows inactive or "dead lithium" formation during plating and stripping of lithium in a full-cell lithium metal battery to be tracked: dead lithium and SEI formation can be quantified by NMR and their relative rates of formation are here compared in carbonate and ether-electrolytes. Little-to-no dead Li was observed when FEC is used as an additive. The bulk magnetic susceptibility effects arising from the paramagnetic lithium metal were used to distinguish between different surface coverages of lithium deposits. The amount of lithium metal was monitored during rest periods, and lithium metal dissolution (corrosion) was observed in all electrolytes, even during the periods when the battery is not in use, i.e., when no current is flowing, demonstrating that dissolution of lithium remains a critical issue for lithium metal batteries. The high rate of corrosion is attributed to SEI formation on both lithium metal and copper (and Cu+, Cu2+ reduction). Strategies to mitigate the corrosion are explored, the work demonstrating that both polymer coatings and the modification of the copper surface chemistry help to stabilize the lithium metal surface.

6.
J Am Chem Soc ; 142(16): 7393-7403, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32233433

ABSTRACT

Increasing battery energy density is greatly desired for applications such as portable electronics and transportation. However, many next-generation batteries are limited by electrolyte selection because high ionic conductivity and poor electrochemical stability are typically observed in most electrolytes. For example, ether-based electrolytes have high ionic conductivity but are oxidatively unstable above 4 V, which prevents the use of high-voltage cathodes that promise higher energy densities. In contrast, hydrofluoroethers (HFEs) have high oxidative stability but do not dissolve lithium salt. In this work, we synthesize a new class of fluorinated ether electrolytes that combine the oxidative stability of HFEs with the ionic conductivity of ethers in a single compound. We show that conductivities of up to 2.7 × 10-4 S/cm (at 30 °C) can be obtained with oxidative stability up to 5.6 V. The compounds also show higher lithium transference numbers compared to typical ethers. Furthermore, we use nuclear magnetic resonance (NMR) and molecular dynamics (MD) to study their ionic transport behavior and ion solvation environment, respectively. Finally, we demonstrate that this new class of electrolytes can be used with a Ni-rich layered cathode (NMC 811) to obtain over 100 cycles at a C/5 rate. The design of new molecules with high ionic conductivity and high electrochemical stability is a novel approach for the rational design of next-generation batteries.

7.
Chem Commun (Camb) ; 53(2): 460, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27910967

ABSTRACT

Correction for 'Revealing instability and irreversibility in nonaqueous sodium-O2 battery chemistry' by Sayed Youssef Sayed et al., Chem. Commun., 2016, 52, 9691-9694.

8.
J Phys Chem Lett ; 7(19): 3770-3775, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27610456

ABSTRACT

Lithium-air (O2) batteries have shown great promise because of their high gravimetric energy density-an order of magnitude greater than Li-ion-but challenges such as electrolyte and electrode instability have led to poor capacity retention and low cycle life. Positive electrodes such as carbon and inorganic metal oxides have been heavily explored, but the degradation of carbon and the limited surface area of the metal oxides limit their practical use. In this work, we study the electron-conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and show it can support oxygen reduction to form Li2O2 in a nonaqueous environment. We also propose a degradation mechanism and show that the formation of sulfone functionalities on the PEDOT surface and cleavage of the polymer repeat unit impairs electron conductivity and leads to poor cycling. Our findings are important in the search for new Li-O2 electrodes, and the physical insights provided are significant and timely.

9.
Chem Commun (Camb) ; 52(62): 9691-4, 2016 Jul 26.
Article in English | MEDLINE | ID: mdl-27406258

ABSTRACT

Charging kinetics and reversibility of Na-O2 batteries can be influenced greatly by the particle size of NaO2 formed upon discharge, and exposure time (reactivity) of NaO2 to the electrolyte. Micrometer-sized NaO2 cubes formed at high discharge rates were charged at smaller overpotentials compared to nanometer-sized counterparts formed at low rates.

10.
J Phys Chem Lett ; 5(16): 2850-6, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-26278088

ABSTRACT

Although dimethyl sulfoxide (DMSO) has emerged as a promising solvent for Li-air batteries, enabling reversible oxygen reduction and evolution (2Li + O2 ⇔ Li2O2), DMSO is well known to react with superoxide-like species, which are intermediates in the Li-O2 reaction, and LiOH has been detected upon discharge in addition to Li2O2. Here we show that toroidal Li2O2 particles formed upon discharge gradually convert into flake-like LiOH particles upon prolonged exposure to a DMSO-based electrolyte, and the amount of LiOH detectable increases with increasing rest time in the electrolyte. Such time-dependent electrode changes upon and after discharge are not typically monitored and can explain vastly different amounts of Li2O2 and LiOH reported in oxygen cathodes discharged in DMSO-based electrolytes. The formation of LiOH is attributable to the chemical reactivity of DMSO with Li2O2 and superoxide-like species, which is supported by our findings that commercial Li2O2 powder can decompose DMSO to DMSO2, and that the presence of KO2 accelerates both DMSO decomposition and conversion of Li2O2 into LiOH.

11.
Phys Chem Chem Phys ; 16(6): 2297-304, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24352578

ABSTRACT

Reducing the energy loss associated with Li2O2 electrochemical oxidation is paramount to the development of efficient rechargeable lithium-oxygen (Li-O2) batteries for practical use. The influence of a series of perovskites with different eg filling on the kinetics of Li2O2 oxidation was examined using Li2O2-prefilled electrodes. While LaCrO3 is inactive for oxygen evolution upon water oxidation in alkaline solution, it was found to provide the highest specific current towards Li2O2 oxidation among all the perovskites examined. Further exploration of Cr-based catalysts showed that Cr nanoparticles (Cr NP) with an average particle size of 40 nm, having oxidized surfaces, had comparable surface area activities to LaCrO3 but much greater mass activities. Unlike Pt/C and Ru/C that promote electrolyte oxidation in addition to Li2O2 oxidation, no evidence of enhanced electrolyte oxidation was found for Cr NP relative to Vulcan carbon. X-ray absorption spectroscopy at the O K and Cr L edge revealed a redox process of Cr(3+) ↔ Cr(6+) on the surface of Cr NP upon Li2O2 oxidation, which might be responsible for the enhanced oxidation kinetics of Li2O2 and the reduced charging voltages of Li-O2 batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...