Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(10): e0276110, 2022.
Article in English | MEDLINE | ID: mdl-36288346

ABSTRACT

Pachycetus paulsonii, Pachycetus wardii, and Antaecetus aithai are middle Eocene archaeocete whales found in Europe, North America, and Africa, respectively. The three are placed in the new basilosaurid subfamily Pachycetinae. Antaecetus is a new genus known from Egypt and Morocco, and the only pachycetine known from a substantial postcranial skeleton. The skull of A. aithai described here resembles that of Saghacetus osiris in size, but lacks the narrowly constricted rostrum of Saghacetus. Antaecetus is smaller than Pachycetus and its teeth are more gracile. Upper premolars differ in having two rather than three accessory cusps flanking the principal cusp. Pachycetines differ from dorudontines in having elongated posterior thoracic and lumbar vertebrae like those of Basilosaurus, but differ from basilosaurines and from dorudontines in having conspicuously pachyosteosclerotic vertebrae with dense and thickly laminated cortical bone surrounding a cancellous core. Pachycetinae are also distinctive in having transverse processes on lumbar vertebrae nearly as long anteroposteriorly as the corresponding centrum. We infer from their pachyosteosclerotic vertebrae that pachycetines were probably sirenian-like slow swimmers living in shallow coastal seas and feeding on passing fish and mobile invertebrates.


Subject(s)
Biological Evolution , Whales , Animals , Morocco , Skull/anatomy & histology , Head , Fossils
2.
Nature ; 581(7806): 67-70, 2020 05.
Article in English | MEDLINE | ID: mdl-32376955

ABSTRACT

In recent decades, intensive research on non-avian dinosaurs has strongly suggested that these animals were restricted to terrestrial environments1. Historical proposals that some groups, such as sauropods and hadrosaurs, lived in aquatic environments2,3 were abandoned decades ago4-6. It has recently been argued that at least some of the spinosaurids-an unusual group of large-bodied theropods of the Cretaceous era-were semi-aquatic7,8, but this idea has been challenged on anatomical, biomechanical and taphonomic grounds, and remains controversial9-11. Here we present unambiguous evidence for an aquatic propulsive structure in a dinosaur, the giant theropod Spinosaurus aegyptiacus7,12. This dinosaur has a tail with an unexpected and unique shape that consists of extremely tall neural spines and elongate chevrons, which forms a large, flexible fin-like organ capable of extensive lateral excursion. Using a robotic flapping apparatus to measure undulatory forces in physical models of different tail shapes, we show that the tail shape of Spinosaurus produces greater thrust and efficiency in water than the tail shapes of terrestrial dinosaurs and that these measures of performance are more comparable to those of extant aquatic vertebrates that use vertically expanded tails to generate forward propulsion while swimming. These results are consistent with the suite of adaptations for an aquatic lifestyle and piscivorous diet that have previously been documented for Spinosaurus7,13,14. Although developed to a lesser degree, aquatic adaptations are also found in other members of the spinosaurid clade15,16, which had a near-global distribution and a stratigraphic range of more than 50 million years14, pointing to a substantial invasion of aquatic environments by dinosaurs.


Subject(s)
Dinosaurs/anatomy & histology , Dinosaurs/physiology , Swimming , Tail/anatomy & histology , Tail/physiology , Water , Adaptation, Physiological , Animals , Aquatic Organisms/classification , Aquatic Organisms/physiology , Diet/veterinary , Dinosaurs/classification , Ecosystem , Fishes , Robotics , Spine/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...