Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 846: 157401, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35872185

ABSTRACT

Within the new policy framework shaped by the EU Green Deal and the Circular Economy Action Plans, the field of wastewater and sludge treatment in Europe is subject to high expectations and new challenges related to mitigation of greenhouse gas emissions, micropollutant removal and resource recovery. With respect to phosphorus recovery, several technologies and processes have been thoroughly investigated. Nevertheless, a systemic and detailed understanding of the existing infrastructure and of the related environmental and economic implications is missing. Such basis is essential to avoid unwanted consequences in designing new strategies, given the long lifespan of any infrastructural change. This study couples a newly collected and highly detailed database for all wastewater treatment plants in Austria bigger than 2000 population equivalent with a combination of analyses, namely Substance Flow Analysis with focus on nutrient and metal distribution in different environmental and anthropogenic compartments, Energy Flow Analysis, Life Cycle Assessment and cost estimation. The case study of Austria is of special interest, given its highly autonomous administration in federal states and its contrasting traits, ranging from flat metropolitan areas like Vienna to low-populated alpine areas. The significant impact of electricity demand of wastewater treatment on the overall Cumulative Energy Demand (CED) shows the importance of optimization measures. Further, the current system of wastewater and sludge disposal have a low efficiency in recovering nutrients and in directing pollutants as heavy metals into final sinks. Sludge composting with subsequent use in landscaping does not only show an unfavorable environmental balance, but it is the only relevant route leading to additional CED and Global Warming Potential emissions and to the highest transport volume. Altogether, the outcomes of this study provide a sound basis to further develop national strategies for resource recovery aimed to optimize trade-offs between different economic and environmental objectives.


Subject(s)
Sewage , Wastewater , Austria , Phosphorus , Sewage/chemistry , Waste Disposal, Fluid/methods , Wastewater/analysis
2.
J Environ Manage ; 232: 636-653, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30522069

ABSTRACT

Occurrence and concentration of a broad spectrum of micropollutants are investigated in Austrian river catchments, namely polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), organotin compounds, perfluoroalkyl acids (PFAAs) and metals. The parallel analysis across multiple environmental and engineered compartments sheds light on the ratio of dissolved and particulate transport and on differences in concentration levels between point and diffuse emission pathways. It is found that some PAHs and organotins are present in rivers, groundwater and bulk deposition at higher concentrations than in municipal wastewater effluents. Among PFAAs and metals, highest concentrations were recorded either in atmospheric deposition or in discharges from wastewater treatment plants. The relevance of the analysis across compartments is best shown by the case of perfluorooctanesulfonic acid (PFOS). Despite municipal wastewater effluents being the emission pathway with highest concentrations, this study reveals that not only rivers, but also atmospheric deposition and groundwater sometimes exceed the environmental quality standard for surface waters. Moreover, this work reveals partially counterintuitive patterns. In rivers with treated wastewater discharges, increasing levels of dissolved compounds were measured at rising flow conditions, whereas the opposite would be expected owing to the dilution effect. This might derive from the mobilisation from soil or suspended particulate matter or rather find its explanation in high concentrations in atmospheric deposition. These hypotheses require however being tested through targeted studies. Additional future research includes the analysis of how regional or catchment specific characteristics might alter the relative importance of different emission pathways, and the modelling of emission and river loads to assess their relative contribution to river pollution.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Austria , Environmental Monitoring , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...