Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Invest Dermatol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871024

ABSTRACT

The change of repair efficiency of UV-induced pyrimidine dimers due to aging was examined in replicatively senesced fibroblasts. The fibroblasts with repeated passages showed the characteristics of cellular senescence, including irreversible cell cycle arrest, elevated ß-galactosidase activity, and senescence-associated secretory phenotype. The incision efficiency of oligonucleotide containing UV lesions was similar regardless of cell doubling levels, but the gap filling process was impaired in replicatively senescent cells. The releases of xeroderma pigmentosum group G, proliferating cell nuclear antigen, and replication protein A from damaged sites were delayed, which might have disturbed the DNA polymerase progression. The persistent single-stranded DNA was likely converted to double-strand breaks, leading to ataxia telangiectasia-mutated phosphorylation and 53BP1 foci formation. Phosphorylated histone H2AX (γ-H2AX) induction mainly occurred in G1 phase in senescent cells, not in S phase such as in normal cells, indicating that replication stress-independent double-strand breaks might be formed. MRE11 having nuclease activity accumulated to damaged sites at early time point after UV irradiation but not released in senescent cells. The pharmacological studies using specific inhibitors for the nuclease activity suggested that MRE11 contributed to the enlargement of single-stranded DNA gap, facilitating the double-strand break formation.

2.
Mar Biotechnol (NY) ; 25(2): 272-280, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36856914

ABSTRACT

Highly oil-accumulative diatoms are expected to be a promising biomass for the production of biofuel. To harvest the diatom oils at high yields, it is critical to elucidate the relationship of oil accumulation with photosynthesis under fluctuating environmental conditions. Here, we characterized the physiological responses of the growth and photosynthesis in the mesophilic diatom Fistulifera solaris and the cold-tolerant one Mayamaea sp. JPCC CTDA0820 to nitrogen starvation, one of the most notable abiotic stresses, where most eukaryotic algae decrease their photosynthetic activity and accumulate oil in the cells. While F. solaris started showing growth retardation at NaNO3 levels less than 50% of a normal F/2 artificial seawater (ASW) medium, Mayamaea sp. sustained normal growth even at a NaNO3 level 10% of normal F/2ASW, indicating the sharp contrast of nitrogen requirement between these two diatom species. In the transition from 100 to 0% nitrogen conditions in the modified F/2ASW, F. solaris showed a clear suppression of chlorophyll (Chl)-based photosynthetic O2 evolution rate and relative electron transport rate at photosystem II, which were negatively correlated to the capacity of non-photochemical quenching. Meanwhile, there was no change in these Chl-based parameters observed in nitrogen-starved Mayamaea sp. Instead, Mayamaea sp. showed a significant decrease in the Chl a amount per cells. These data suggested the occurrence of two types of photosynthetic responses to nitrogen starvation in oleaginous diatoms; that is, (1) suppression of photosynthetic activity per Chl with enhancing heat dissipation of excess light energy and (2) synchronous suppression of cellular photosynthetic activity with Chl amounts.


Subject(s)
Diatoms , Nitrogen , Photosynthesis , Oils
SELECTION OF CITATIONS
SEARCH DETAIL
...