Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 11(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38140172

ABSTRACT

mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have played a key role in reducing morbidity and mortality from coronavirus disease 2019 (COVID-19). We conducted a double-blind, placebo-controlled phase I/II trial to evaluate the safety, tolerability, and immunogenicity of EXG-5003, a two-dose, controllable self-replicating RNA vaccine against SARS-CoV-2. EXG-5003 encodes the receptor binding domain (RBD) of SARS-CoV-2 and was administered intradermally without lipid nanoparticles (LNPs). The participants were followed for 12 months. Forty healthy participants were enrolled in Cohort 1 (5 µg per dose, n = 16; placebo, n = 4) and Cohort 2 (25 µg per dose, n = 16; placebo, n = 4). No safety concerns were observed with EXG-5003 administration. SARS-CoV-2 RBD antibody titers and neutralizing antibody titers were not elevated in either cohort. Elicitation of antigen-specific cellular immunity was observed in the EXG-5003 recipients in Cohort 2. At the 12-month follow-up, participants who had received an approved mRNA vaccine (BNT162b2 or mRNA-1273) >1 month after receiving the second dose of EXG-5003 showed higher cellular responses compared with equivalently vaccinated participants in the placebo group. The findings suggest a priming effect of EXG-5003 on the long-term cellular immunity of approved SARS-CoV-2 mRNA vaccines.

2.
Nat Commun ; 14(1): 6725, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872153

ABSTRACT

The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , SARS-CoV-2/metabolism , Epitopes, T-Lymphocyte , Receptors, Antigen, T-Cell/metabolism , Nucleocapsid/metabolism , Spike Glycoprotein, Coronavirus
3.
iScience ; 26(4): 106335, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36968065

ABSTRACT

Intradermal delivery of self-replicating RNA (srRNA) is a promising vaccine platform. We have developed an srRNA that functions optimally at around 33°C (skin temperature) and is inactivated at or above 37°C (core body temperature) as a safety switch. This temperature-controllable srRNA (c-srRNA), when tested as an intradermal vaccine against SARS-CoV-2, functions when injected naked without lipid nanoparticles. Unlike most currently available vaccines, c-srRNA vaccines predominantly elicit cellular immunity with little or no antibody production. Interestingly, c-srRNA-vaccinated mice produced antigen-specific antibodies upon subsequent stimulation with antigen protein. Antigen-specific antibodies were also produced when B cell stimulation using antigen protein was followed by c-srRNA booster vaccination. We have thus designed a pan-coronavirus booster vaccine that incorporates both spike-receptor-binding domains as viral surface proteins and evolutionarily conserved nucleoproteins as viral internal proteins, from both severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus. c-srRNA may provide a route to activate cellular immunity against a wide variety of pathogens.

4.
bioRxiv ; 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36263074

ABSTRACT

Intradermal delivery of self-replicating RNA (srRNA) is a promising vaccine platform. Considering that human skin temperature is around 33°C, lower than core body temperature of 37°C, we have developed an srRNA that functions optimally at skin temperature and is inactivated at or above 37°C as a safety switch. This temperature- c ontrollable srRNA (c-srRNA), when tested as an intradermal vaccine against SARS-CoV-2, functions when injected naked without lipid nanoparticles. Unlike most currently available vaccines, c-srRNA vaccines predominantly elicit cellular immunity with little or no antibody production. Interestingly, c-srRNA-vaccinated mice produced antigen-specific antibodies upon subsequent stimulation with antigen protein. Antigen-specific antibodies were also produced when B-cell stimulation using antigen protein was followed by c-srRNA booster vaccination. Using c-srRNA, we have designed a pan-coronavirus booster vaccine that incorporates both spike receptor binding domains as viral surface proteins and evolutionarily conserved nucleoproteins as viral non-surface proteins, from both SARS-CoV-2 and MERS-CoV. It can thereby potentially immunize against SARS-CoV-2, SARS-CoV, MERS-CoV, and their variants. c-srRNA may provide a route to activate cellular immunity against a wide variety of pathogens.

5.
In Vitro Cell Dev Biol Anim ; 52(5): 616-24, 2016 May.
Article in English | MEDLINE | ID: mdl-27130680

ABSTRACT

Retinoic acid (RA) is one of the most potent inducers of differentiation of mouse embryonic stem cells (ESCs). However, previous studies show that RA treatment of cells cultured in the presence of a leukemia inhibitory factor (LIF) also result in the upregulation of a gene called Zscan4, whose transient expression is a marker for undifferentiated ESCs. We explored the balance between these two seemingly antagonistic effects of RA. ESCs indeed differentiated in the presence of LIF after RA treatment, but colonies of undifferentiated ESCs eventually emerged from these differentiated cells - even in the presence of RA. These colonies, named secondary colonies, consist of three cell types: typical undifferentiated ESCs expressing pluripotency genes such as Pou5f1, Sox2, and Nanog; cells expressing Zscan4; and endodermal-like cells located at the periphery of the colony. The capacity to form secondary colonies was confirmed for all eight tested ESC lines. Cells from the secondary colonies - after transfer to the standard ESC medium - retained pluripotency, judged by their strong alkaline phosphatase (ALP) staining, typical colony morphology, gene expression profile, stable karyotype, capacity to differentiate into all three germ layers in embryoid body formation assays, and successful contribution to chimeras after injection into blastocysts. Based on flow cytometry analysis (FACS), the proportion of Zscan4-positive cells in secondary colonies was higher than in standard ESC colonies, which may explain the capacity of ESCs to resist the differentiating effects of RA and instead form secondary colonies of undifferentiated ESCs. This hypothesis is supported by cell-lineage tracing analysis, which showed that most cells in the secondary colonies were descendents of cells transiently expressing Zscan4.


Subject(s)
Cell Differentiation/drug effects , Embryonic Stem Cells/drug effects , Tretinoin/pharmacology , Animals , Cell Culture Techniques , Cell Lineage , Embryonic Stem Cells/cytology , Leukemia Inhibitory Factor/pharmacology , Mice , Up-Regulation
6.
DNA Res ; 22(5): 331-42, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26324424

ABSTRACT

Aneuploidy, an abnormal number of chromosomes, has previously been considered irremediable. Here, we report findings that euploid cells increased among cultured aneuploid cells after exposure to the protein ZSCAN4, encoded by a mammalian-specific gene that is ordinarily expressed in preimplantation embryos and occasionally in stem cells. For footprint-free delivery of ZSCAN4 to cells, we developed ZSCAN4 synthetic mRNAs and Sendai virus vectors that encode human ZSCAN4. Applying the ZSCAN4 biologics to established cultures of mouse embryonic stem cells, most of which had become aneuploid and polyploid, dramatically increased the number of euploid cells within a few days. We then tested the biologics on non-immortalized primary human fibroblast cells derived from four individuals with Down syndrome­the most frequent autosomal trisomy of chromosome 21. Within weeks after ZSCAN4 application to the cells in culture, fluorescent in situ hybridization with a chromosome 21-specific probe detected the emergence of up to 24% of cells with only two rather than three copies. High-resolution G-banded chromosomes further showed up to 40% of cells with a normal karyotype. These findings were confirmed by whole-exome sequencing. Similar results were obtained for cells with the trisomy 18 of Edwards syndrome. Thus a direct, efficient correction of aneuploidy in human fibroblast cells seems possible in vitro using human ZSCAN4.


Subject(s)
DNA-Binding Proteins/genetics , Down Syndrome/prevention & control , Genetic Therapy/methods , Transcription Factors/genetics , Trisomy/genetics , Aneuploidy , Animals , Cells, Cultured , Chromosomes, Human, Pair 18/genetics , Genetic Vectors/genetics , Humans , In Situ Hybridization, Fluorescence , Mice , Mouse Embryonic Stem Cells , Primary Cell Culture , RNA, Messenger/genetics , Sendai virus , Trisomy 18 Syndrome
7.
PLoS One ; 9(9): e106916, 2014.
Article in English | MEDLINE | ID: mdl-25211343

ABSTRACT

The ability of small molecules to maintain self-renewal and to inhibit differentiation of pluripotent stem cells has been well-demonstrated. Two widely used molecules are PD 98059 (PD), an inhibitor of extracellular-signal-regulated kinase 1 (ERK), and SC1 (Pluripotin), which inhibits the RasGAP and ERK pathways. However, no studies have been conducted to compare their effects on the pluripotency and derivation of embryonic stem (ES) cells from inbred mice C57BL/6, an important mouse strain frequently used to model behavior, cognitive functions, immune system, and metabolic disorders in humans and also the first mouse strain chosen to be sequenced for its entire genome. We found significantly increased derivation efficiency of ES cells from in vivo fertilized embryos (fES) of C57BL/6 with the use of PD (71.4% over the control of 35.3%). Because fES and ES from cloned embryos (ntES) are not distinguishable in transcription or translation profiles, we used ntES cells to compare the effect of small molecules on their in vitro characteristics, in vitro differentiation ability, and the ability to generate full-term ntES-4N pups by tetraploid complementation. NtES cells exhibited typical ES characteristics and up-regulated Sox2 expression in media with either small-molecule. Higher rates of full term ntES-4N pup were generated by the supplementation of PD or SC1. We obtained the highest efficiency of ntES-4N pup generation ever reported from this strain by supplementing ES medium with SC1. Lastly, we compared the pluripotency of fES, ntES and induced pluripotent stem (iPS) cells of C57BL/6 background using the tetraploid complementation assay. A significant increase in implantation sites and the number of full-term pups were obtained when fES, ntES, and iPS cells were cultured with SC1 compared to the control ES medium. In conclusion, supplementing ES cell culture medium with PD and SC1 increases the derivation efficiency and pluripotency, respectively, of stem cells derived from the refractory inbred C57BL/6 strain.


Subject(s)
Cell Differentiation/drug effects , Flavonoids/administration & dosage , Pluripotent Stem Cells/drug effects , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Animals , Diploidy , Humans , Induced Pluripotent Stem Cells , MAP Kinase Signaling System/drug effects , Mice , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Pluripotent Stem Cells/cytology , SOXB1 Transcription Factors/genetics , Small Molecule Libraries/administration & dosage
8.
J Pathol ; 233(3): 228-37, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24652535

ABSTRACT

Recent evidence suggests that ovarian high-grade serous carcinoma (HGSC) originates from the epithelium of the fallopian tube. However, most mouse models are based on the previous prevailing view that ovarian cancer develops from the transformation of the ovarian surface epithelium. Here, we report the extensive histological and molecular characterization of the mogp-TAg transgenic mouse, which expresses the SV40 large T-antigen (TAg) under the control of the mouse müllerian-specific Ovgp-1 promoter. Histological analysis of the fallopian tubes of mogp-TAg mice identified a variety of neoplastic lesions analogous to those described as precursors to ovarian HGSC. We identified areas of normal-appearing p53-positive epithelium that are similar to 'p53 signatures' in the human fallopian tube. More advanced proliferative lesions with nuclear atypia and epithelial stratification were also identified that were morphologically and immunohistochemically reminiscent of human serous tubal intraepithelial carcinoma (STIC), a potential precursor of ovarian HGSC. Beside these non-invasive precursor lesions, we also identified invasive adenocarcinoma in the ovaries of 56% of the mice. Microarray analysis revealed several genes differentially expressed between the fallopian tube of mogp-TAg and wild-type (WT) C57BL/6. One of these genes, Top2a, which encodes topoisomerase IIα, was shown by immunohistochemistry to be concurrently expressed with elevated p53 and was specifically elevated in mouse STICs but not in the surrounding tissues. TOP2A protein was also found elevated in human STICs, low-grade and high-grade serous carcinoma. The mouse model reported here displays a progression from normal tubal epithelium to invasive HGSC in the ovary, and therefore closely simulates the current emerging model of human ovarian HGSC pathogenesis. This mouse therefore has the potential to be a very useful new model for elucidating the mechanisms of serous ovarian tumourigenesis, as well as for developing novel approaches for the prevention, diagnosis and therapy of this disease.


Subject(s)
Adenocarcinoma/genetics , Cell Transformation, Neoplastic/genetics , Fallopian Tubes/pathology , Genetic Engineering , Neoplasms, Cystic, Mucinous, and Serous/genetics , Ovarian Neoplasms/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Antigens, Polyomavirus Transforming/genetics , Antigens, Polyomavirus Transforming/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Disease Progression , Fallopian Tubes/metabolism , Female , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Grading , Neoplasm Invasiveness , Neoplasms, Cystic, Mucinous, and Serous/metabolism , Neoplasms, Cystic, Mucinous, and Serous/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Poly-ADP-Ribose Binding Proteins , Promoter Regions, Genetic , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
PLoS Genet ; 9(8): e1003668, 2013.
Article in English | MEDLINE | ID: mdl-23935533

ABSTRACT

Calpains are Ca(2+)-dependent modulator Cys proteases that have a variety of functions in almost all eukaryotes. There are more than 10 well-conserved mammalian calpains, among which eutherian calpain-6 (CAPN6) is unique in that it has amino acid substitutions at the active-site Cys residue (to Lys in humans), strongly suggesting a loss of proteolytic activity. CAPN6 is expressed predominantly in embryonic muscles, placenta, and several cultured cell lines. We previously reported that CAPN6 is involved in regulating microtubule dynamics and actin reorganization in cultured cells. The physiological functions of CAPN6, however, are still unclear. Here, to elucidate CAPN6's in vivo roles, we generated Capn6-deficient mice, in which a lacZ expression cassette was integrated into the Capn6 gene. These Capn6-deficient mouse embryos expressed lacZ predominantly in skeletal muscles, as well as in cartilage and the heart. Histological and biochemical analyses showed that the CAPN6 deficiency promoted the development of embryonic skeletal muscle. In primary cultured skeletal muscle cells that were induced to differentiate into myotubes, Capn6 expression was detected in skeletal myocytes, and Capn6-deficient cultures showed increased differentiation. Furthermore, we found that CAPN6 was expressed in the regenerating skeletal muscles of adult mice after cardiotoxin-induced degeneration. In this experimental system, Capn6-deficient mice exhibited more advanced skeletal-muscle regeneration than heterozygotes or wild-type mice at the same time point. These results collectively showed that a loss of CAPN6 promotes skeletal muscle differentiation during both development and regeneration, suggesting a novel physiological function of CAPN6 as a suppressor of skeletal muscle differentiation.


Subject(s)
Calpain/genetics , Embryonic Development/genetics , Microtubules/metabolism , Muscle, Skeletal/growth & development , Regeneration/genetics , Animals , Calpain/biosynthesis , Calpain/deficiency , Cell Differentiation , Gene Expression Regulation, Developmental , Humans , Mice , Muscle Development/genetics
10.
Nat Commun ; 4: 1966, 2013.
Article in English | MEDLINE | ID: mdl-23739662

ABSTRACT

The developmental potency of mouse embryonic stem (ES) cells, which is the ability to contribute to a whole embryo, is known to deteriorate during long-term cell culture. Previously, we have shown that ES cells oscillate between Zscan4(-) and Zscan4(+) states, and the transient activation of Zscan4 is required for the maintenance of telomeres and genome stability of ES cells. Here we show that increasing the frequency of Zscan4 activation in mouse ES cells restores and maintains their developmental potency in long-term cell culture. Injection of a single ES cell with such increased potency into a tetraploid blastocyst gives rise to an entire embryo with a higher success rate. These results not only provide a means to rejuvenate ES cells by manipulating Zscan4 expression, but also indicate the active roles of Zscan4 in the long-term maintenance of ES cell potency.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Animals , Cell Line , Female , Male , Mice , Mice, Inbred C57BL , Polyploidy , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Telomere/metabolism
11.
Nat Commun ; 4: 1843, 2013.
Article in English | MEDLINE | ID: mdl-23673628

ABSTRACT

During female reproductive life, ovarian follicle reserve is reduced by maturation and atresia until menopause ensues. Foxo3 is required to maintain the ovarian reserve in mice. Here we show that overexpression of constitutively active FOXO3 can increase ovarian reproductive capacity in mice. We find increased follicle numbers and decreased gonadotropin levels in aging FOXO3-transgenic mice compared with wild-type littermates, suggesting maintenance of a greater ovarian reserve. Based on cumulative progeny in aging animals, we find 31-49% increased fertility in transgenic females. The gene expression profile of Foxo3-/- knockout ovaries appears older than that of wild-type littermates, and the transgene induces a younger-looking profile, restoring much of the wild-type transcriptome. This is the first gain-of-function model of augmented reproductive reserve in mice, thus emphasizing the role of Foxo3 as a guardian of the ovarian follicle pool in mammals and a potential determinant of the onset of menopause.


Subject(s)
Forkhead Transcription Factors/metabolism , Oocytes/metabolism , Ovary/metabolism , Animals , Female , Fertility , Follicle Stimulating Hormone/blood , Forkhead Box Protein O3 , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Luteinizing Hormone/blood , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Oocytes/cytology , Ovarian Follicle/growth & development , Ovarian Follicle/metabolism , Ovary/cytology , Transgenes
12.
Sci Rep ; 3: 1390, 2013.
Article in English | MEDLINE | ID: mdl-23462645

ABSTRACT

Networks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4. The data suggest that the trajectories of gene expression change are already preconfigured by the gene regulatory network and roughly correspond to extraembryonic and embryonic fates of cell differentiation, respectively. These data also indicate the robustness of the pluripotency gene network, as the transient repression of most TFs did not alter the transcriptomes.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Transcription Factors/genetics , Animals , Cluster Analysis , Gene Expression Profiling , Gene Silencing , Mice , Models, Biological , RNA Interference , Transcription Factors/metabolism , Transcriptome
13.
Stem Cells ; 30(12): 2645-56, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22968989

ABSTRACT

Although leukemia inhibitory factor (LIF) maintains the ground state pluripotency of mouse embryonic stem cells and induced pluripotent stem cells (iPSCs) by activating the Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) pathway, the mechanism remained unclear. Stat3 has only been shown to promote complete reprogramming of epiblast and neural stem cells and partially reprogrammed cells (pre-iPSCs). We investigated if and how Jak/Stat3 activation promotes reprogramming of terminally differentiated mouse embryonic fibroblasts (MEFs). We demonstrated that activated Stat3 not only promotes but also is essential for the pluripotency establishment of MEFs during reprogramming. We further demonstrated that during this process, inhibiting Jak/Stat3 activity blocks demethylation of Oct4 and Nanog regulatory elements in induced cells, which are marked by suppressed endogenous pluripotent gene expression. These are correlated with the significant upregulation of DNA methyltransferase (Dnmt) 1 and histone deacetylases (HDACs) expression as well as the increased expression of lysine-specific histone demethylase 2 and methyl CpG binding protein 2. Inhibiting Jak/Stat3 also blocks the expression of Dnmt3L, which is correlated with the failure of retroviral transgene silencing. Furthermore, Dnmt or HDAC inhibitor but not overexpression of Nanog significantly rescues the reprogramming arrested by Jak/Stat3 inhibition or LIF deprivation. Finally, we demonstrated that LIF/Stat3 signal also represents the prerequisite for complete reprogramming of pre-iPSCs. We conclude that Jak/Stat3 activity plays a fundamental role to promote pluripotency establishment at the epigenetic level, by facilitating DNA demethylation/de novo methylation, and open-chromatin formation during late-stage reprogramming.


Subject(s)
Cellular Reprogramming/physiology , Embryonic Stem Cells/physiology , Induced Pluripotent Stem Cells/physiology , Janus Kinases/metabolism , STAT3 Transcription Factor/metabolism , Animals , Cellular Reprogramming/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epigenomics , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/physiology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Janus Kinases/genetics , Mice , STAT3 Transcription Factor/genetics , Signal Transduction
14.
Sci Rep ; 2: 208, 2012.
Article in English | MEDLINE | ID: mdl-22355722

ABSTRACT

The generation of induced pluripotent stem cells (iPSCs) by the forced expression of defined transcription factors in somatic cells holds great promise for the future of regenerative medicine. However, the initial reprogramming mechanism is still poorly understood. Here we show that Zscan4, expressed transiently in2-cell embryos and embryonic stem cells (ESCs), efficiently produces iPSCs from mouse embryo fibroblasts when coexpressed with Klf4, Oct4, and Sox2. Interestingly, the forced expression of Zscan4 is required onlyfor the first few days of iPSC formation. Microarray analysis revealed transient and early induction of preimplantation-specific genes in a Zscan4-dependent manner. Our work indicates that Zscan4 is a previously unidentified potent natural factor that facilitates the reprogramming process and reactivates early embryonic genes.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Kruppel-Like Transcription Factors/genetics , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/cytology , SOXB1 Transcription Factors/genetics , Transcription Factors/physiology , Animals , Cells, Cultured , Kruppel-Like Factor 4 , Mice , Oligonucleotide Array Sequence Analysis
15.
Cell Reprogram ; 14(1): 1-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22257162

ABSTRACT

The efficiency of embryonic stem (ES) cell derivation relies on an optimized culture medium and techniques for treating preimplantation stage embryos. Recently, ES cell derivation from the preblastocyst developmental stage was reported by removing the zona pellucida from embryos of the most efficient strain for ES cell derivation (129Sv) during early preimplantation. Here, we showed that ES cells can be efficiently derived and maintained in a modified medium (MEMα), from preblastocysts of a low-efficiency mouse strain (a hybrid consisting of 50% B6, 25% CBA, and 25% DBA). Preblastocyst-derived ES cell lines were normal in terms of pluripotency-related protein expression, and chromosome number. Also, preblastocyst-derived ES cell lines from various culture conditions showed pluripotency in vivo through teratoma analysis. Interestingly, ES cell lines produced from preblastocysts and blastocysts, regardless of the derivation culture conditions, are nearly indistinguishable by their global gene expression profiles.


Subject(s)
Blastocyst/cytology , Cell Culture Techniques/methods , Embryonic Stem Cells/cytology , Gene Expression Profiling , Morula/cytology , Animals , Blastocyst/drug effects , Blastocyst/metabolism , Cell Line , Culture Media/pharmacology , Embryonic Development/drug effects , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Female , Green Fluorescent Proteins/metabolism , Karyotype , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Inbred DBA , Morula/drug effects , Morula/metabolism , Octamer Transcription Factor-3/metabolism , Teratoma
16.
Cell Reprogram ; 13(2): 121-31, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21473689

ABSTRACT

Induced pluripotent stem cells (iPSCs) generated by forced expression of four transcription factors offer promises for regenerative and therapeutic uses in human diseases. However, it is necessary to overcome the risk of tumorigenicity caused by the use of potent oncogenes and the use of randomly integrating vectors before the iPSC technology can be applied to human medicine. Stem cells and cancer cells share many features in common, implying that there are similar underlying mechanisms in their development. Small molecules have been used to induce cell reprogramming for lineage trans-differentiation and for maintaining pluripotency of stem cells. In this study, we investigated the possibility of replacing all reprogramming viral factors with small molecules. To this end, we evaluated the effects of carcinogens at nongenotoxic levels on somatic cells. We identified 16 candidate chemicals through biology-oriented in silico high-throughput screening with commercially available inventories from Sigma-Aldrich for cancer research, and established a reprogramming protocol of 16-day treatment followed by 5 days of recovery. This protocol was applied to B6/129 mouse embryonic fibroblasts (MEFs) at passage 3. From recovery day 2, colonies appeared at an efficiency of 0.02%. These colonies were positive for both alkaline phosphatase and surface specific embryonic antigen-1 (SSEA-1) at a comparable level to those of mouse embryonic stem cells (ESCs). Global gene expression analysis with a 38K gene MEEBO microarray revealed that the colonies had 564 (1.5%) differentially expressed genes compared to MEFs at day 0 of treatment, and these genes were enriched in "neuromuscular differentiation." Moreover, 122 differentially expressed genes in the colonies were ESC-enriched, including downregulated somatic markers and upregulated stem cell markers. In conclusion, combined chemical treatment of MEFs herein might have caused these cells to transverse to an intermediate state within the mesodermal lineages.


Subject(s)
Carcinogens/pharmacology , Cell Dedifferentiation/drug effects , Cell Differentiation/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Induced Pluripotent Stem Cells/metabolism , Alkaline Phosphatase/biosynthesis , Animals , Cell Line , Fibroblasts/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Lewis X Antigen/biosynthesis , Mice
17.
BMC Genomics ; 12: 102, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21306619

ABSTRACT

BACKGROUND: In addition to determining static states of gene expression (high vs. low), it is important to characterize their dynamic status. For example, genes with H3K27me3 chromatin marks are not only suppressed but also poised for activation. However, the responsiveness of genes to perturbations has never been studied systematically. To distinguish gene responses to specific factors from responsiveness in general, it is necessary to analyze gene expression profiles of cells responding to a large variety of disturbances, and such databases did not exist before. RESULTS: We estimated the responsiveness of all genes in mouse ES cells using our recently published database on expression change after controlled induction of 53 transcription factors (TFs) and other genes. Responsive genes (N=4746), which were readily upregulated or downregulated depending on the kind of perturbation, mostly have regulatory functions and a propensity to become tissue-specific upon differentiation. Tissue-specific expression was evaluated on the basis of published (GNF) and our new data for 15 organs and tissues. Non-responsive genes (N=9562), which did not change their expression much following any perturbation, were enriched in housekeeping functions. We found that TF-responsiveness in ES cells is the best predictor known for tissue-specificity in gene expression. Among genes with CpG islands, high responsiveness is associated with H3K27me3 chromatin marks, and low responsiveness is associated with H3K36me3 chromatin, stronger tri-methylation of H3K4, binding of E2F1, and GABP binding motifs in promoters. CONCLUSIONS: We thus propose the responsiveness of expression to perturbations as a new way to define the dynamic status of genes, which brings new insights into mechanisms of regulation of gene expression and tissue specificity.


Subject(s)
Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Animals , Chromatin/metabolism , Histones/metabolism , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Protein Binding
18.
Cell Reprogram ; 12(2): 203-11, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20677934

ABSTRACT

Deriving histocompatible embryonic stem (ES) cells by somatic cell nuclear transfer (SCNT) and parthenogenetic activation (PA) requires fresh oocytes, which prevents their applications in humans. Here, we evaluated the efficiency of deriving ES cells from mature metaphase II (MII) and immature metaphase I (MI) vitrified oocytes, by PA or SCNT, in a mouse model. We successfully generated ES cell lines from PA (MII and MI) and SCNT (MII and MI) blastocysts. These cell lines expressed genes and antigens characteristic of pluripotent ES cells and produced full-term pups upon tetraploid embryo complementation. This study established an animal model for efficient generation of patient-specific ES cell lines using cryopreserved oocytes. This is a major step forward in the application of therapeutic cloning and parthenogenetic technology in human regenerative medicine and will serve as an important alternative to the iPS cell technology in countries/regions where these technologies are permitted.


Subject(s)
Cryopreservation/methods , Embryonic Stem Cells/cytology , Nuclear Transfer Techniques , Oocytes/cytology , Parthenogenesis , Animals , Blastocyst/cytology , Cloning, Organism , Embryo Culture Techniques , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Regenerative Medicine
19.
J Clin Invest ; 120(8): 2817-28, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20644252

ABSTRACT

Sirtuins are a phylogenetically conserved NAD+-dependent protein deacetylase/ADP-ribosyltransferase family implicated in diverse biological processes. Several family members localize to mitochondria, the function of which is thought to determine the developmental potential of preimplantation embryos. We have therefore characterized the role of sirtuins in mouse preimplantation development under in vitro culture conditions. All sirtuin members were expressed in eggs, and their expression gradually decreased until the blastocyst stage. Treatment with sirtuin inhibitors resulted in increased intracellular ROS levels and decreased blastocyst formation. These effects were recapitulated by siRNA-induced knockdown of Sirt3, which is involved in mitochondrial energy metabolism, and in Sirt3-/- embryos. The antioxidant N-acetyl-L-cysteine and low-oxygen conditions rescued these adverse effects. When Sirt3-knockdown embryos were transferred to pseudopregnant mice after long-term culture, implantation and fetal growth rates were decreased, indicating that Sirt3-knockdown embryos were sensitive to in vitro conditions and that the effect was long lasting. Further experiments revealed that maternally derived Sirt3 was critical. Sirt3 inactivation increased mitochondrial ROS production, leading to p53 upregulation and changes in downstream gene expression. The inactivation of p53 improved the developmental outcome of Sirt3-knockdown embryos, indicating that the ROS-p53 pathway was responsible for the developmental defects. These results indicate that Sirt3 plays a protective role in preimplantation embryos against stress conditions during in vitro fertilization and culture.


Subject(s)
Blastocyst/physiology , Embryonic Development , Fertilization in Vitro , Oxidative Stress , Sirtuin 3/physiology , Tumor Suppressor Protein p53/physiology , Animals , Female , Mice , Mice, Inbred ICR , Mitochondria/metabolism , NIH 3T3 Cells , RNA Interference , Reactive Oxygen Species/metabolism , Sirtuin 3/antagonists & inhibitors , Sirtuin 3/genetics
20.
Biol Reprod ; 83(2): 177-84, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20410454

ABSTRACT

Tetraploid (4N) complementation assay is regard as the most stringent characterization test for the pluripotency of embryonic stem (ES) cells. The technology can generate mice fully derived from the injected ES cell (ES-4N) with 4N placentas. However, it remains a very inefficient procedure owing to a lack of information on the optimal conditions for ES incorporation into the 4N embryos. In the present study, we injected ES cells from embryos of natural fertilization (fES) and somatic cell nuclear transfer (ntES) into 4N embryos at various stages of development to determine the optimal stage of ES cells integration by comparing the efficiency of full-term ES-4N mouse generation. Our results demonstrate that fES/ntES cells can be incorporated into 4N embryos at 2-cell, 4-cell and blastocyst stages and full-term mice can be generated. Interestingly, ntES cells injected into the 4-cell group resulted in the lowest efficiency (5.6%) compared to the 2-cell (13.8%, P > 0.05) and blastocyst (16.7%, P < 0.05) stages. Because 4N embryos start to form compacted morulae at the 4-cell stage, we investigated whether the lower efficiency at this stage was due to early compaction by injecting ntES cells into artificially de-compacted embryos treated with calcium free medium. Although the treatment changed the embryonic morphology, it did not increase the efficiency of ES-4N mice generation. Immunochemistry of the cytoskeleton displayed microtubule and microfilament polarization at the late 4-cell stage in 4N embryos, which suggests that de-compaction treatment cannot reverse the polarization process. Taken together, we show here that a wide developmental range of 4N embryos can be used for 4N complementation and embryo polarization and compaction may restrict incorporation of ES cells into 4N embryos.


Subject(s)
Embryo, Mammalian , Embryonic Development , Embryonic Stem Cells/physiology , Polyploidy , Animals , Blastocyst , Diploidy , Embryo Transfer , Embryonic Stem Cells/transplantation , Female , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Nuclear Transfer Techniques , Pluripotent Stem Cells/physiology , Pluripotent Stem Cells/transplantation , Pseudopregnancy , Transplantation Chimera
SELECTION OF CITATIONS
SEARCH DETAIL
...