Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Org Inorg Au ; 2(1): 75-82, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-36855404

ABSTRACT

The progress of the topochemical reduction reaction that converts LaSrNiRuO6 into LaSrNiRuO4 depends on the synthesis conditions used to prepare the oxidized phase. Samples of LaSrNiRuO6 that have been quenched from high temperature can be readily and rapidly converted into LaSrNiRuO4. In contrast, samples that have been slow-cooled cannot be completely reduced. This reactivity difference is attributed to the differing microstructures of the quenched and slow-cooled samples, with the former having much smaller average crystalline domain sizes and larger lattice strains than the latter. A mechanism to explain this effect is presented, in which the greater "plasticity" of small crystalline domains helps lower the activation energy of the reduction reaction. In addition, we propose that the enhanced lattice strain in quenched samples also acts to destabilize the host phase, further enhancing reactivity. These observations suggest that the microstructure of a material can be used to "activate" topochemical reactions in the solid state, expanding the scope of phases that can be prepared by this type of reaction.

2.
RSC Adv ; 10(68): 41816-41820, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-35516559

ABSTRACT

Lithium-oxide-halide and lithium-hydroxide-halide antiperovskites were explored for potential electrolytes in all-solid Li-ion batteries. A single-phase sample of the Ruddlesden-Popper (RP) series of compounds, LiBr(Li2OHBr)2 with double antiperovskite Li2OHBr layers and rigid rock-salt type LiBr layers, was obtained. Li+-ion vacancies are introduced in the double antiperovskite Li2OHBr layers but not in the LiBr layers and induce two-dimensional Li-ion conduction with low activation energy by mediating Li-ion hopping. In contrast to the Br-containing RP phase, Cl-containing Li-oxide-halide and Li-hydroxide-halide RP phases cannot be crystallized due to the structural mismatch between the antiperovskite layers and rigid LiCl layers.

3.
Inorg Chem ; 59(1): 343-349, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31820944

ABSTRACT

High-pressure, high-temperature reaction conditions can be useful to stabilize metastable polymorphs of complex transition metal oxides. We successfully prepare a new defect pyrochlore Pb2FeTeO6.5 with B-site disordered Fe and Te cations under ambient conditions. Treatment of this material under 8 GPa and 950 °C results in a reductive transformation into the B-site cation-ordered double perovskite Pb2FeTeO6. Mössbauer and EELS spectroscopy confirm the iron cations are in the +3 oxidation state in both phases indicating that this transformation proceeds via reduction of the tellurium cations under apparently oxidizing conditions. This reaction demonstrates that for a suitably chosen system, it is possible to carry out chemical reactions under pressure in unexpected ways.

4.
Inorg Chem ; 58(22): 15393-15400, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31657564

ABSTRACT

High-pressure X-ray diffraction measurements on the layered oxyhydrides Sr2VO3H and Sr3V2O5H2 reveal that both compounds undergo a pressure-induced rock-salt to CsCl (B1-B2) structural transition, similar to those observed in binary compounds (oxides, halides, chalcogenides, etc.). This structural transition, observed at 43 and 45 GPa in Sr2VO3H and Sr3V2O5H2, respectively, relieves almost all of the accumulated strain on the infinite V-O-V ladders, such that the V-O bond lengths are almost identical at 0 and 50 GPa but are substantially compressed at intermediate pressures. The resistances of both materials with 1-dimensional VO ladders decrease with increasing pressure, but unlike SrVO2H that contains 2-dimensional VO2 sheets, they remain insulating even at the highest accessible pressures. The reduction in dimensionality from planar to linear VO networks reduces the dispersion of the V-O π bands that define the band gap and leads to insulating behavior at all measured pressures.

5.
Inorg Chem ; 57(16): 10410-10415, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30067346

ABSTRACT

BaFe xNi1- xO3 with end members of BaNiO3 ( x = 0) and BaFeO3 ( x = 1), which, respectively, adopt the 2H and 6H hexagonal perovskite structures, were synthesized, and their crystal structures were investigated. A new single phase, Ba4Fe3NiO12 ( x = 0.75), that adopts the 12R perovskite structure with the space group R3̅ m ( a = 5.66564(7) Å and c = 27.8416(3) Å), was found to be stabilized. Mössbauer spectroscopy results and structure analysis using synchrotron and neutron powder diffraction data revealed that nominal Fe3+ occupies the corner-sharing octahedral site while the unusually high valence Fe4+ and Ni4+ occupy the face-sharing octahedral sites in the trimers, giving a charge formula of Ba4Fe3+Fe4+2Ni4+O11.5. The magnetic properties of the compound are also discussed.

6.
Inorg Chem ; 57(5): 2890-2898, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29436825

ABSTRACT

The anion-ordered oxide-hydride SrVO2H is an antiferromagnetic insulator due to strong correlations between vanadium d electrons. In an attempt to hole-dope SrVO2H into a metallic state, a strategy of first preparing SrV1- xTi xO3 phases and then converting them to the corresponding SrV1- xTi xO2H phases via reaction with CaH2 was followed. This revealed that the solid solution between SrVO3 and SrTiO3 is only stable at high temperature. In addition, reactions between SrV0.95Ti0.05O3 and CaH2 were observed to yield SrV0.95Ti0.05O1.5H1.5 not SrV0.95Ti0.05O2H. This dramatic change in reactivity for a very modest change in initial chemical composition is attributed to an electronic destabilization of SrVO2H on titanium substitution. Density functional theory calculations indicate that the presence of an anion-ordered, tetragonal SrMO2H phase is uniquely associated with a d2 electron count and that titanium substitution leads to an electronic destabilization of SrV1- xTi xO2H phases, which, ultimately, drives further reaction of SrV1- xTi xO2H to SrV1- xTi xO1.5H1.5. The observed sensitivity of the reaction products to the chemical composition of initial phases highlights some of the difficulties associated with electronically doping metastable materials prepared by topochemical reactions.

7.
Inorg Chem ; 53(15): 8020-4, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25050865

ABSTRACT

Reaction of NiCl2 with NaTaO3 leads the formation of the perovskite phase Ni(0.5)TaO3, via a topochemical nickel-for-sodium cation exchange in which the framework of apex-linked TaO6 octahedra present in the parent phase is retained. Neutron powder diffraction data indicate Ni(0.5)TaO3 adopts a structure analogous to the paraelectric phase of LiTaO3, with triclinic P1 crystallographic symmetry. Although Ni(0.5)TaO3 has features which make it a good candidate phase for magnetoelectric multiferroic behavior, the phase remains paramagnetic in the temperature range 15 < T (K) < 300, and detailed crystallographic characterization and analysis of SHG activity indicate it retains a centrosymmetric structure down to the lowest temperatures measured (5 K). Topochemical cation exchange reactions of 3D perovskite oxides offer the opportunity to prepare a wide range of novel metastable phases in a rational manner with a high degree of synthetic control.

SELECTION OF CITATIONS
SEARCH DETAIL
...