Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(10): e0292554, 2023.
Article in English | MEDLINE | ID: mdl-37819930

ABSTRACT

Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state with molecular profiles. This inability to integrate a live-cell phenotype-such as invasiveness, cell:cell interactions, and changes in spatial positioning-with multi-omic data creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomic and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live cells. This protocol requires cells expressing a photoconvertible fluorescent protein and employs live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulations for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live cell phenotypes and multi-omic heterogeneity within normal and diseased cellular populations.


Subject(s)
Genomics , Multiomics , Flow Cytometry/methods , Phenotype , Cell Communication
2.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909653

ABSTRACT

Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomics and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live-cells. We begin with cells stably expressing a photoconvertible fluorescent protein and employ live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulation for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live-cell phenotype and multi-omic heterogeneity within normal and diseased cellular populations.

3.
J Cell Biochem ; 122(5): 538-548, 2021 05.
Article in English | MEDLINE | ID: mdl-33480071

ABSTRACT

The development of bone requires carefully choregraphed signaling to bone progenitors to form bone. Our group recently described the requirement of transforming growth factor beta receptor 3 (TGFßR3), a receptor involved in TGFß pathway signaling, during osteoblast lineage commitment in mice. The TGFß pathway is known to play multiple osteo-inductive and osteo-inhibitory roles during osteoblast development and TGFßR3 human mutations are associated with reduced bone mineral density, making TGFßR3 a unique target for bone inductive therapy. In this article, we demonstrated increased mineralization of human pediatric bone-derived osteoblast-like cells (HBO) when treated with soluble TGFßR3 (sR3) using Alizarin Red staining. Osteogenic commitment of HBO cells was demonstrated by induction of osteogenic genes RUNX2, osteocalcin, osteopontin, and osterix. Evaluation of the canonical TGFß pathway signaling demonstrated that sR3 was able to induce bone formation in HBO cells, mainly through activation of noncanonical targets of TGFß pathway signaling including AKT, ERK, and p38 MAP kinases. Inhibition of these osteogenic noncanonical pathways in the HBO cells also inhibited mineralization, suggesting they are each required. Although no induction of SMAD1, 5, and 9 was observed, there was the activation of SMAD2 and 3 suggesting that sR3 is primarily signaling via the noncanonical pathways during osteogenic induction of the HBO. Our results highlight the important role of TGFßR3 in osteoblast induction of mineralization in human bone cells through noncanonical targets of TGFß signaling. Future studies will focus on the ability of sR3 to induce bone regeneration in vivo using animal models.


Subject(s)
Osteoblasts/cytology , Osteoblasts/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Humans , Osteogenesis/genetics , Osteogenesis/physiology , Signal Transduction/genetics , Signal Transduction/physiology
4.
Bone ; 143: 115657, 2021 02.
Article in English | MEDLINE | ID: mdl-32980561

ABSTRACT

Craniofacial bone loss is a complex clinical problem with limited regenerative solutions. Currently, BMP2 is used as a bone-regenerative therapy in adults, but in pediatric cases of bone loss, it is not FDA-approved due to concerns of life-threatening inflammation and cancer. Development of a bone-regenerative therapy for children will transform our ability to reduce the morbidity associated with current autologous bone grafting techniques. We discovered that JAGGED1 (JAG1) induces cranial neural crest (CNC) cell osteoblast commitment during craniofacial intramembranous ossification, suggesting that exogenous JAG1 delivery is a potential craniofacial bone-regenerative approach. In this study, we found that JAG1 delivery using synthetic hydrogels containing O9-1 cells, a CNC cell line, into critical-sized calvarial defects in C57BL/6 mice provided robust bone-regeneration. Since JAG1 signals through canonical (Hes1/Hey1) and non-canonical (JAK2) NOTCH pathways in CNC cells, we used RNAseq to analyze transcriptional pathways activated in CNC cells treated with JAG1 ± DAPT, a NOTCH-canonical pathway inhibitor. JAG1 upregulated expression of multiple NOTCH canonical pathway genes (Hes1), which were downregulated in the presence of DAPT. JAG1 also induced bone chemokines (Cxcl1), regulators of cytoskeletal organization and cell migration (Rhou), signaling targets (STAT5), promoters of early osteoblast cell proliferation (Prl2c2, Smurf1 and Esrra), and, inhibitors of osteoclasts (Id1). In the presence of DAPT, expression levels of Hes1 and Cxcl1 were decreased, whereas, Prl2c2, Smurf1, Esrra, Rhou and Id1 remain elevated, suggesting that JAG1 induces osteoblast proliferation through these non-canonical genes. Pathway analysis of JAG1 + DAPT-treated CNC cells revealed significant upregulation of multiple non-canonical pathways, including the cell cycle, tubulin pathway, regulators of Runx2 initiation and phosphorylation of STAT5 pathway. In total, our data show that JAG1 upregulates multiple pathways involved in osteogenesis, independent of the NOTCH canonical pathway. Moreover, our findings suggest that JAG1 delivery using a synthetic hydrogel, is a bone-regenerative approach with powerful translational potential.


Subject(s)
Neural Crest , Receptors, Notch , Adult , Animals , Bone Regeneration , Child , Humans , Jagged-1 Protein/metabolism , Mice , Mice, Inbred C57BL , Neural Crest/metabolism , Osteoblasts/metabolism , Receptors, Notch/metabolism , Ubiquitin-Protein Ligases , rho GTP-Binding Proteins
5.
Methods Mol Biol ; 1527: 219-232, 2017.
Article in English | MEDLINE | ID: mdl-28116720

ABSTRACT

The NADPH oxidase (Nox) family of enzymes is expressed in many tissues that are involved in hypertension, including blood vessels, kidney, and brain. In these tissues, the products of NADPH oxidase activity, superoxide and ultimately hydrogen peroxide, act as intracellular and extracellular messengers during compartmentalized cellular signaling. The correct measurement of Nox activity and its products is crucial to enable studies of how these signaling pathways affect the molecular mechanisms underlying hypertension. Here, we describe methods for detection and measurement of hydrogen peroxide and superoxide derived from NADPH oxidases in biological samples such as cells and tissues.


Subject(s)
NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Animals , Chromatography, High Pressure Liquid , Hydrogen Peroxide/metabolism , Hypertension/metabolism , Mice , Oxidation-Reduction , Signal Transduction/physiology , Superoxides/metabolism
6.
Sci Transl Med ; 8(357): 357ra122, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27655848

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, and safe and effective therapies are needed. Bile acids (BAs) and their receptors [including the nuclear receptor for BAs, farnesoid X receptor (FXR)] play integral roles in regulating whole-body metabolism and hepatic lipid homeostasis. We hypothesized that interruption of the enterohepatic BA circulation using a luminally restricted apical sodium-dependent BA transporter (ASBT) inhibitor (ASBTi; SC-435) would modify signaling in the gut-liver axis and reduce steatohepatitis in high-fat diet (HFD)-fed mice. Administration of this ASBTi increased fecal BA excretion and messenger RNA (mRNA) expression of BA synthesis genes in liver and reduced mRNA expression of ileal BA-responsive genes, including the negative feedback regulator of BA synthesis, fibroblast growth factor 15. ASBT inhibition resulted in a marked shift in hepatic BA composition, with a reduction in hydrophilic, FXR antagonistic species and an increase in FXR agonistic BAs. ASBT inhibition restored glucose tolerance, reduced hepatic triglyceride and total cholesterol concentrations, and improved NAFLD activity score in HFD-fed mice. These changes were associated with reduced hepatic expression of lipid synthesis genes (including liver X receptor target genes) and normalized expression of the central lipogenic transcription factor, Srebp1c Accumulation of hepatic lipids and SREBP1 protein were markedly reduced in HFD-fed Asbt(-/-) mice, providing genetic evidence for a protective role mediated by interruption of the enterohepatic BA circulation. Together, these studies suggest that blocking ASBT function with a luminally restricted inhibitor can improve both hepatic and whole body aspects of NAFLD.


Subject(s)
Bile Acids and Salts/metabolism , Diet, High-Fat/adverse effects , Ileum/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/prevention & control , Animals , Ceramides/metabolism , Cholesterol/metabolism , Cyclic N-Oxides/administration & dosage , Cyclic N-Oxides/pharmacology , Feces , Gene Expression Regulation/drug effects , Glucose Tolerance Test , Ileum/drug effects , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Organic Anion Transporters, Sodium-Dependent/deficiency , Organic Anion Transporters, Sodium-Dependent/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Symporters/deficiency , Symporters/metabolism , Triglycerides/metabolism , Tropanes/administration & dosage , Tropanes/pharmacology
7.
J Mol Cell Cardiol ; 92: 21-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26801741

ABSTRACT

OBJECTIVES: Polymerase delta interacting protein 2 (Poldip2) has previously been implicated in migration, proliferation and extracellular matrix (ECM) production in vascular smooth muscle cells. To better understand the role of Poldip2 in ECM regulation, we investigated the mechanism responsible for collagen I accumulation in Poldip2(+/-) mouse aortic smooth muscle cells (MASMs). APPROACH AND RESULTS: Protein degradation and protein synthesis pathways were investigated. Depletion of Poldip2 had no effect on proteasome activity, but caused a partial reduction in autophagic flux. However, the rate of collagen I degradation was increased in Poldip2(+/-) vs. Poldip2(+/+) MASMs. Conversely, activation of the PI3K/Akt/mTOR signaling pathway, involved in regulation of protein synthesis, was significantly elevated in Poldip2(+/-) MASMs as was ß1-integrin expression. Suppressing mTOR signaling using Akt inhibitor or rapamycin and reducing ß1-integrin expression using siRNA prevented the increase in collagen I production. While collagen I and fibronectin were increased in Poldip2(+/-) MASMs, overall protein synthesis was not different from that in Poldip2(+/)(+)MASMs, suggesting selectivity of Poldip2 for ECM proteins. CONCLUSIONS: Poldip2(+/-) MASMs exhibit higher ß1-integrin expression and activity of the PI3K/Akt/mTOR signaling pathway, leading to increased ECM protein synthesis. These findings have important implications for vascular diseases in which ECM accumulation plays a role.


Subject(s)
Collagen Type I/metabolism , Extracellular Matrix/genetics , Integrin beta Chains/biosynthesis , Mitochondrial Proteins/genetics , Muscle, Smooth, Vascular/metabolism , Nuclear Proteins/genetics , Animals , Aorta/growth & development , Aorta/metabolism , Cell Proliferation/genetics , Fibronectins/metabolism , Integrin beta Chains/metabolism , Mice , Mitochondrial Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins/metabolism , Phosphatidylinositol 3-Kinases/biosynthesis , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis/genetics , Proteolysis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics
8.
Arterioscler Thromb Vasc Biol ; 34(7): 1548-55, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24855063

ABSTRACT

OBJECTIVE: Collateral vessel formation can functionally compensate for obstructive vascular lesions in patients with atherosclerosis. Neovascularization processes are triggered by fluid shear stress, hypoxia, growth factors, chemokines, proteases, and inflammation, as well as reactive oxygen species, in response to ischemia. Polymerase δ-interacting protein 2 (Poldip2) is a multifunctional protein that regulates focal adhesion turnover and vascular smooth muscle cell migration and modifies extracellular matrix composition. We, therefore, tested the hypothesis that loss of Poldip2 impairs collateral formation. APPROACH AND RESULTS: The mouse hindlimb ischemia model has been used to understand mechanisms involved in postnatal blood vessel formation. Poldip2(+/-) mice were subjected to femoral artery excision, and functional and morphological analysis of blood vessel formation was performed after injury. Heterozygous deletion of Poldip2 decreased the blood flow recovery and spontaneous running activity at 21 days after injury. H2O2 production, as well as the activity of matrix metalloproteinases-2 and -9, was reduced in these animals compared with Poldip2(+/+) mice. Infiltration of macrophages in the peri-injury muscle was also decreased; however, macrophage phenotype was similar between genotypes. In addition, the formation of capillaries and arterioles was impaired, as was angiogenesis, in agreement with a decrease in proliferation observed in endothelial cells treated with small interfering RNA against Poldip2. Finally, regression of newly formed vessels and apoptosis was more pronounced in Poldip2(+/-) mice. CONCLUSIONS: Together, these results suggest that Poldip2 promotes ischemia-induced collateral vessel formation via multiple mechanisms that likely involve reactive oxygen species-dependent activation of matrix metalloproteinase activity, as well as enhanced vascular cell growth and survival.


Subject(s)
Ischemia/metabolism , Mitochondrial Proteins/metabolism , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Nuclear Proteins/metabolism , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Collateral Circulation , Disease Models, Animal , Heterozygote , Hindlimb , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hydrogen Peroxide/metabolism , Ischemia/genetics , Ischemia/pathology , Ischemia/physiopathology , Macrophages/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , RNA Interference , Recovery of Function , Regional Blood Flow , Time Factors , Transfection
9.
Arterioscler Thromb Vasc Biol ; 33(9): 2154-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23825363

ABSTRACT

OBJECTIVE: On the basis of previous evidence that polymerase delta interacting protein 2 (Poldip2) increases reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (Nox4) activity in vascular smooth muscle cells, we hypothesized that in vivo knockdown of Poldip2 would inhibit reactive oxygen species production and alter vascular function. APPROACH AND RESULTS: Because homozygous Poldip2 deletion is lethal, Poldip2(+/-) mice were used. Poldip2 mRNA and protein levels were reduced by ≈50% in Poldip2(+/-) aorta, with no change in p22phox, Nox1, Nox2, and Nox4 mRNAs. NADPH oxidase activity was also inhibited in Poldip2(+/-) tissue. Isolated aortas from Poldip2(+/-) mice demonstrated impaired phenylephrine and potassium chloride-induced contractions, increased stiffness, and reduced compliance associated with disruption of elastic lamellae and excessive extracellular matrix deposition. Collagen I secretion was elevated in cultured vascular smooth muscle cells from Poldip2(+/-) mice and restored by H2O2 supplementation, suggesting that this novel function of Poldip2 is mediated by reactive oxygen species. Furthermore, Poldip2(+/-) mice were protected against aortic dilatation in a model of experimental aneurysm, an effect consistent with increased collagen secretion. CONCLUSIONS: Poldip2 knockdown reduces H2O2 production in vivo, leading to increases in extracellular matrix, greater vascular stiffness, and impaired agonist-mediated contraction. Thus, unaltered expression of Poldip2 is necessary for vascular integrity and function.


Subject(s)
Aorta/metabolism , Aortic Aneurysm/prevention & control , Mitochondrial Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Aorta/drug effects , Aorta/pathology , Aorta/physiopathology , Aortic Aneurysm/genetics , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Aortic Aneurysm/physiopathology , Blood Pressure , Cells, Cultured , Collagen Type I/metabolism , Cytochrome b Group/metabolism , Dilatation, Pathologic , Disease Models, Animal , Dose-Response Relationship, Drug , Elastic Tissue/metabolism , Extracellular Matrix/metabolism , Gene Expression Regulation , Genotype , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Myocytes, Smooth Muscle/metabolism , NADH, NADPH Oxidoreductases/metabolism , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/metabolism , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Oxidants/pharmacology , Phenotype , RNA, Messenger/metabolism , Vascular Stiffness , Vasoconstrictor Agents/pharmacology , Vasodilation
10.
Front Biosci (Schol Ed) ; 4(3): 1044-64, 2012 01 01.
Article in English | MEDLINE | ID: mdl-22202108

ABSTRACT

Reactive oxygen species (ROS) are produced by all vascular cells and regulate the major physiological functions of the vasculature. Production and removal of ROS are tightly controlled and occur in discrete subcellular locations, allowing for specific, compartmentalized signaling. Among the many sources of ROS in the vessel wall, NADPH oxidases are implicated in physiological functions such as control of vasomotor tone, regulation of extracellular matrix and phenotypic modulation of vascular smooth muscle cells. They are involved in the response to injury, whether as an oxygen sensor during hypoxia, as a regulator of protein processing, as an angiogenic stimulus, or as a mechanism of wound healing. These enzymes have also been linked to processes leading to disease development, including migration, proliferation, hypertrophy, apoptosis and autophagy. As a result, NADPH oxidases participate in atherogenesis, systemic and pulmonary hypertension and diabetic vascular disease. The role of ROS in each of these processes and diseases is complex, and a more full understanding of the sources, targets, cell-specific responses and counterbalancing mechanisms is critical for the rational development of future therapeutics.


Subject(s)
Muscle, Smooth, Vascular/enzymology , NADPH Oxidases/metabolism , Vascular Diseases/enzymology , Animals , Humans , NADP/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Signal Transduction
11.
PLoS One ; 6(1): e14591, 2011 Jan 26.
Article in English | MEDLINE | ID: mdl-21297867

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) stress has pathophysiological relevance in vascular diseases and merges with proteasome function. Proteasome inhibition induces cell stress and may have therapeutic implications. However, whether proteasome inhibition potentiates ER stress-induced apoptosis and the possible mechanisms involved in this process are unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that proteasome inhibition with MG132, per se at non-lethal levels, sensitized vascular smooth muscle cells to caspase-3 activation and cell death during ER stress induced by tunicamycin (Tn). This effect was accompanied by suppression of both proadaptive (KDEL chaperones) and proapoptotic (CHOP/GADD153) unfolded protein response markers, although, intriguingly, the splicing of XBP1 was markedly enhanced and sustained. In parallel, proteasome inhibition completely prevented ER stress-induced increase in NADPH oxidase activity, as well as increases in Nox4 isoform and protein disulfide isomerase mRNA expression. Increased Akt phosphorylation due to proteasome inhibition partially offset the proapoptotic effect of Tn or MG132. Although proteasome inhibition enhanced oxidative stress, reactive oxygen species scavenging had no net effect on sensitization to Tn or MG132-induced cell death. CONCLUSION/RELEVANCE: These data indicate unfolded protein response-independent pathways whereby proteasome inhibition sensitizes vascular smooth muscle to ER stress-mediated cell death. This may be relevant to understand the therapeutic potential of such compounds in vascular disease associated with increased neointimal hyperplasia.


Subject(s)
Endoplasmic Reticulum/pathology , Muscle, Smooth, Vascular/pathology , NADPH Oxidases/antagonists & inhibitors , Oxidative Stress , Proteasome Inhibitors , Unfolded Protein Response/drug effects , Animals , Caspase 3/drug effects , Caspase 3/metabolism , Cell Death , Cell Line , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Rabbits
12.
J Leukoc Biol ; 86(4): 989-98, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19564574

ABSTRACT

PDI, a redox chaperone, is involved in host cell uptake of bacteria/viruses, phagosome formation, and vascular NADPH oxidase regulation. PDI involvement in phagocyte infection by parasites has been poorly explored. Here, we investigated the role of PDI in in vitro infection of J774 macrophages by amastigote and promastigote forms of the protozoan Leishmania chagasi and assessed whether PDI associates with the macrophage NADPH oxidase complex. Promastigote but not amastigote phagocytosis was inhibited significantly by macrophage incubation with thiol/PDI inhibitors DTNB, bacitracin, phenylarsine oxide, and neutralizing PDI antibody in a parasite redox-dependent way. Binding assays indicate that PDI preferentially mediates parasite internalization. Bref-A, an ER-Golgi-disrupting agent, prevented PDI concentration in an enriched macrophage membrane fraction and promoted a significant decrease in infection. Promastigote phagocytosis was increased further by macrophage overexpression of wild-type PDI and decreased upon transfection with an antisense PDI plasmid or PDI siRNA. At later stages of infection, PDI physically interacted with L. chagasi, as revealed by immunoprecipitation data. Promastigote uptake was inhibited consistently by macrophage preincubation with catalase. Additionally, loss- or gain-of-function experiments indicated that PMA-driven NADPH oxidase activation correlated directly with PDI expression levels. Close association between PDI and the p22phox NADPH oxidase subunit was shown by confocal colocalization and coimmunoprecipitation. These results provide evidence that PDI not only associates with phagocyte NADPH oxidase but also that PDI is crucial for efficient macrophage infection by L. chagasi.


Subject(s)
Golgi Apparatus/enzymology , Leishmania , Leishmaniasis/enzymology , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/metabolism , Phagocytosis , Protein Disulfide-Isomerases/metabolism , Animals , Anti-Bacterial Agents , Brefeldin A/pharmacology , Cricetinae , Enzyme Inhibitors/pharmacology , Male , Mice , Protein Disulfide-Isomerases/antagonists & inhibitors
13.
São Paulo; s.n; 2009. [147] p. ilus, graf.
Thesis in Portuguese | LILACS | ID: lil-586846

ABSTRACT

Processos celulares que governam as NADPH oxidases vasculares em condições patológicas não estão claros ainda. Como os processos redox são parte intrínseca da resposta da célula ao estresse, temos investigado se o estresse oxidativo pode convergir com outros tipos de estresse via Nox(es). No presente estudo, focamos na inibição do proteasoma como uma condição relevante de estresse. A incubação de células musculares lisas com concentrações não apoptóticas de inibidores do proteasoma, MG132 e lactacistina, promoveu aumento na produção basal de superóxido e na atividade da NADPH oxidase, diminuição da atividade da SOD e da razão GSH/GSSG. Por outro lado, a inibição do proteasoma diminui a atividade da Nox após estímulo com Angiotensina II ou Tunicamicina, conhecido estressor do retículo endoplasmático. Em condições basais, MG132 induz a expressão de mRNA da Nox1, entretanto o aumento de Nox1 induzido por Angiotensina II foi diminuído na presença de MG132. O mesmo efeito ocorre com a indução de Nox4 pela Tunicamicina, que nesse caso foi drasticamente reduzida na presença de MG132. Além disso, tanto Angiotensina II quanto Tunicamicina induziram a atividade lítica do proteasoma 20S. A seguir, investigamos as conseqüências fisiológicas do MG132 na sinalização do estresse do RE, uma conhecida resposta mediada por Nox4. Células vasculares incubadas com MG132 induzem a expressão de marcadores do estresse do RE, GRP78 e XBP1, e também os marcadores mais tardios ATF4 e o próapoptótico CHOP/GADD153. Resultados similares ocorrem também com a Tunicamicina. Entretanto, a co-incubação de Tunicamicina e MG132 diminui e a sinalização do estresse do RE. AKT e p38 MAPK foram ativados por MG132, possivelmente como resposta ao estresse induzido pela inibição do proteasoma. Assim, a inibição do proteasoma bloqueia a NADPH oxidase, com aumento da atividade basal e expressão da Nox1 versus forte inibição da ativação e expressão da Nox4 frente ao estímulo. A inibição da Nox4...


Cellular processes governing vascular Nox family NADPH oxidases in disease conditions are unclear. Since redox processes are intrinsic to cell stress response, we asked whether oxidative stress merges with other types of stress via Nox(es). We focused on proteasome inhibition as a relevant stress condition. Vascular smooth muscle cells (VSMC) incubation with non-apoptotic concentrations of proteasome inhibitors MG132 or lactacystin promoted increased baseline superoxide generation (HPLC/DHE products) and NADPH oxidase activity, decreased SOD activity and GSH/GSSG ratio. Conversely, proteasome inhibitors decreased by Nox response to Angiotensin II (AngII) and abrogated Nox response to endoplasmic reticulum (ER) stressor tunicamycin. With MG132, basal Nox1 mRNA levels were increased, while Nox1 response to AngII was blunted. Moreover, MG132 abolished Nox4 mRNA levels TN-induced. Both AngII and TN (at 2 and 4 hs) promoted increased 20S proteasome lytic activity. We next assessed physiological consequences of MG132 in ER stress signaling, a known Nox4- mediated response. VSMC incubation with MG132 alone enhanced expression of the ER stress markers Grp78 and XBP1 and late markers such as ATF4 and proapoptotic CHOP/GADD153. Similar results occurred with the known ER stressor TN. However, co-incubation of TN and MG132 decreased Grp78, Grp94 and CHOP/GADD153, indicating that proteasome inhibition interrupts ER stress. AKT and p38 are activated by MG132 as response to stress and recover to survival. Thus, proteasome inhibition disrupts NADPH oxidase, with increased baseline activity and Nox1 expression vs. strong inhibition of stimulated Nox1 and Nox4 activation/expression. The later effect may underlie MG132-mediated inhibition of ER stress signaling. (Support: FAPESP, CNPq Milênio Redoxoma)...


Subject(s)
Myocytes, Smooth Muscle , NADPH Oxidases , Oxidative Stress , Protein Disulfide-Isomerases
14.
Antioxid Redox Signal ; 10(6): 1101-13, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18373437

ABSTRACT

Vascular cell NADPH oxidase complexes are key sources of signaling reactive oxygen species (ROS) and contribute to disease pathophysiology. However, mechanisms that fine-tune oxidase-mediated ROS generation are incompletely understood. Besides known regulatory subunits, upstream mediators and scaffold platforms reportedly control and localize ROS generation. Some evidence suggest that thiol redox processes may coordinate oxidase regulation. We hypothesized that thiol oxidoreductases are involved in this process. We focused on protein disulfide isomerase (PDI), a ubiquitous dithiol disulfide oxidoreductase chaperone from the endoplasmic reticulum, given PDI's unique versatile role as oxidase/isomerase. PDI is also involved in protein traffic and can translocate to the cell surface, where it participates in cell adhesion and nitric oxide internalization. We recently provided evidence that PDI exerts functionally relevant regulation of NADPH oxidase activity in vascular smooth muscle and endothelial cells, in a thiol redox-dependent manner. Loss-of-function experiments indicate that PDI supports angiotensin II-mediated ROS generation and Akt phosphorylation. In addition, PDI displays confocal co-localization and co-immunoprecipitates with oxidase subunits, indicating close association. The mechanisms of such interaction are yet obscure, but may involve subunit assembling stabilization, assistance with traffic, and subunit disposal. These data may clarify an integrative view of oxidase activation in disease conditions, including stress responses.


Subject(s)
Muscle, Smooth, Vascular/enzymology , NADPH Oxidases/metabolism , Protein Disulfide-Isomerases/physiology , Vascular Diseases/etiology , Endothelium, Vascular/enzymology , Humans , Muscle, Smooth, Vascular/cytology , Oxidation-Reduction , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/metabolism , Signal Transduction , Sulfhydryl Compounds/chemistry
15.
Toxicol In Vitro ; 22(4): 1018-24, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18395405

ABSTRACT

The aim of this study was to investigate whether the toxicity of saturated and polyunsaturated fatty acids (PUFA) on RINm5F cells is related to the phosphorylation state of Akt, ERK and PKC delta. The regulation of these kinases was compared in three experimental designs: (a) 4h-exposure, (b) 4h-exposure and a subsequent withdrawn of the FA for a 20 h period and (c) 24h-exposure. Saturated and PUFA were toxic to RINm5F cells even at low concentrations. Also, evidence is provided for a late (i.e. the effect only appeared hours after the treatment) and a persistent regulation (i.e. maintenance of the effect for several hours) of Akt, ERK and PKC delta phosphorylation by the FA. Late activation of PKC delta seems important for palmitate cytotoxicity. Persistent activation of the survival proteins Akt and ERK by stearate, oleate and arachidonate might play an important role to prevent the toxic effect of posterior PKC delta activation. The results shown may explain why a short-period exposure to FA is not enough to induce cytotoxicity in pancreatic beta-cells, since survival pathways are activated. Besides, when this activation is persistent, it may overcome a posterior induction of death pathways.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Fatty Acids, Unsaturated/toxicity , Fatty Acids/toxicity , Insulin-Secreting Cells/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Death/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Extracellular Signal-Regulated MAP Kinases/drug effects , Fatty Acids/administration & dosage , Fatty Acids, Unsaturated/administration & dosage , Insulin-Secreting Cells/enzymology , Insulinoma/metabolism , Phosphorylation/drug effects , Protein Kinase C-delta/drug effects , Protein Kinase C-delta/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Rats , Time Factors
16.
Endocrine ; 29(3): 391-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16943575

ABSTRACT

In the present study, we investigated the protein levels and phosphorylation status of the insulin receptor and insulin receptor substrates (IRS-1, IRS-2, and IRS-3) as well as their association with PI(3)-kinase in the rat adipose tissue of two models of insulin resistance: dexamethasone treatment and aging. AKT and atypical PKC phosphorylation detection were also performed. Both models showed decreased insulin-induced IRS-1 and IRS-2 tyrosine phosphorylation, accompanied by reduced protein levels of IRS-1 and IRS-2. Nevertheless, IRS-3 protein level was unchanged in aging but increased in dexamethasone-treated rats. PI(3)-kinase association with IRS-1 was reduced in aged rats, whereas dexamethasone-treated rats showed a reduced IRS-2/ PI(3)-kinase association. However, IRS-3 association with PI(3)-kinase was reduced in both models, as well as insulin-induced AKT and PKC phosphorylation. The alterations described in the present study show that the action of insulin is differently impaired depending on the origin of insulin resistance. These differences might be directly linked to the singular metabolic features of the models we tested.


Subject(s)
Adipose Tissue/metabolism , Aging/physiology , Dexamethasone/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Obesity/metabolism , Phosphoproteins/metabolism , Adipose Tissue/drug effects , Animals , Blood Glucose/analysis , Body Weight , Insulin/blood , Insulin Receptor Substrate Proteins , Insulin Resistance , Isoenzymes/metabolism , Male , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Kinase C/metabolism , Rats , Rats, Wistar , Receptor, Insulin/metabolism , Signal Transduction/drug effects
17.
Life Sci ; 79(16): 1537-45, 2006 Sep 13.
Article in English | MEDLINE | ID: mdl-16716361

ABSTRACT

Chronic ouabain treatment produces hypertension acting on the central nervous system and at vascular levels. However, cardiac effects in this model of hypertension are still poorly understood. Hence, the effects of hypertension induced by chronic ouabain administration ( approximately 8 microg day(-1), s.c.) for 5 weeks on the cardiac function were studied in Wistar rats. Ouabain induces hypertension but not myocardial hypertrophy. Awake ouabain-treated rats present an increment of the left ventricular systolic pressure and of the maximum positive and negative dP/dt. Isolated papillary muscles from ouabain-treated rats present an increment in isometric force, and this effect was present even when inotropic interventions (external Ca(2+) increment and increased heart rate) were performed. However, the sarcoplasmic reticulum activity and the SERCA-2 protein expression did not change. On the other hand, the activity of myosin ATPase increased without changes in myosin heavy chain protein expression. In addition, the expression of alpha(1) and alpha(2) isoforms of Na(+), K(+)-ATPase also increased in the left ventricle from ouabain-hypertensive rats. The present results showed positive inotropic and lusitropic effects in hearts from awake ouabain-treated rats, which are associated with an increment of the isometric force development and of the activity of myosin ATPase and expression of catalytic subunits of the Na(+), K(+)-ATPase.


Subject(s)
Cardiotonic Agents/toxicity , Hypertension/chemically induced , Myocardial Contraction/drug effects , Ouabain/toxicity , Ventricular Function, Left/drug effects , Adaptation, Physiological , Animals , Blood Pressure/drug effects , Calcium-Transporting ATPases/metabolism , Heart Ventricles/metabolism , Hypertension/enzymology , In Vitro Techniques , Male , Myosin Heavy Chains/metabolism , Myosins/metabolism , Papillary Muscles/drug effects , Papillary Muscles/physiology , Protein Isoforms/metabolism , Rats , Rats, Wistar , Sarcoplasmic Reticulum/enzymology , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Sodium-Potassium-Exchanging ATPase/metabolism , Ventricular Function
18.
FEBS Lett ; 580(1): 285-90, 2006 Jan 09.
Article in English | MEDLINE | ID: mdl-16376341

ABSTRACT

The effect of dehydroepiandrosterone (DHEA) on pancreatic islet function of aged rats, an animal model with impaired glucose-induced insulin secretion, was investigated. The following parameters were examined: morphological analysis of endocrine pancreata by immunohistochemistry; protein levels of insulin receptor, IRS-1, IRS-2, PI 3-kinase, Akt-1, and Akt-2; and static insulin secretion in isolated pancreatic islets. Pancreatic islets from DHEA-treated rats showed an increased beta-cell mass accompanied by increased Akt-1 protein level but reduced IR, IRS-1, and IRS-2 protein levels and enhanced glucose-stimulated insulin secretion. The present results suggest that DHEA may be a promising drug to prevent diabetes during aging.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aging/metabolism , Cell Size/drug effects , Dehydroepiandrosterone/administration & dosage , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Aging/drug effects , Aging/pathology , Animals , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Humans , Immunohistochemistry , Insulin Receptor Substrate Proteins , Insulin Secretion , Insulin-Secreting Cells/pathology , Intracellular Signaling Peptides and Proteins , Male , Phosphatidylinositol 3-Kinases/biosynthesis , Phosphoproteins/biosynthesis , Proto-Oncogene Proteins c-akt , Rats , Rats, Wistar
19.
Endocrinology ; 144(2): 638-47, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12538627

ABSTRACT

The actions of LH are mediated through a single class of cell surface LH/human chorionic gonadotropin receptor, which is a member of the G protein-coupled receptor family. In the present study we showed that LH induced rapid tyrosine phosphorylation and activation of the Janus kinase 2 (JAK2) in rat ovary. Upon JAK2 activation, tyrosine phosphorylation of signal transducer and activator of transcription-1 (STAT-1), STAT-5b, insulin receptor substrate-1 (IRS-1), and Src homology and collagen homology (Shc) were detected. In addition, LH induced IRS-1/phosphoinositol 3-kinase and Shc /growth factor receptor-binding protein 2 (Grb2) associations and downstream AKT (protein kinase B, homologous to v-AKT) serine phosphorylation and ERK tyrosine phosphorylation, respectively. The simultaneous infusion of insulin and LH induced higher phosphorylation levels of JAK2, STAT5b, IRS-1, and AKT compared with each hormone alone in the whole ovary of normal rats. By immunohistochemistry we demonstrated that these late events take place in follicular cells and both external and internal theca. These results indicate a new signal transduction pathway for LH and show that there is positive cross-talk between the insulin and LH signaling pathways at the level of phosphoinositol 3-kinase/AKT pathway in this tissue.


Subject(s)
DNA-Binding Proteins/metabolism , Insulin/metabolism , Luteinizing Hormone/metabolism , Milk Proteins , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , Trans-Activators/metabolism , Animals , Female , Insulin Receptor Substrate Proteins , Janus Kinase 2 , Luteinizing Hormone/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Ovary/enzymology , Phosphoproteins/metabolism , Phosphorylation , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Rats , Rats, Wistar , Receptor Cross-Talk/physiology , STAT1 Transcription Factor , STAT5 Transcription Factor , Signal Transduction/drug effects , Tyrosine/metabolism , src Homology Domains/physiology
20.
Free Radic Biol Med ; 32(9): 841-59, 2002 May 01.
Article in English | MEDLINE | ID: mdl-11978486

ABSTRACT

Nitrogen dioxide and carbonate radical anion have received sporadic attention thus far from biological investigators. However, accumulating data on the biochemical reactions of nitric oxide and its derived oxidants suggest that these radicals may play a role in various pathophysiological processes. These potential roles are also indicated by recent studies on the high efficiency of urate and nitroxides in protecting cells and whole animals against the injury associated with conditions of excessive nitric oxide production. The high protective effects of these antioxidants are incompletely defined at the mechanistic level but some of them can be explained by their efficiency in scavenging peroxynitrite-derived radicals, particularly nitrogen dioxide and carbonate radical anion. In this review, we provide a framework for this hypothesis and discuss the potential sources and properties of these radicals that are likely to become increasingly recognized as important mediators of biological processes.


Subject(s)
Carbonates/metabolism , Free Radicals/metabolism , Nitrogen Dioxide/metabolism , Peroxynitrous Acid/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Oxidation-Reduction , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...