Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 43(2): 758-766, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34449546

ABSTRACT

We have studied the biological effects of the internal exposure to radioactive manganese-56 dioxide (56MnO2), the major radioisotope dust found in soil after atomic bomb explosions. Our previous study of blood chemistry indicated a possible adverse effect of 56MnO2 on the liver. In the present study, we further examined the effects on the liver by determining changes in hepatic gene expressions. Male Wistar rats were exposed to 56MnO2 particles (three groups with the whole-body doses of 41, 90, and 100 mGy), stable MnO2 particles, or external 60Co γ-rays (2 Gy), and were examined together with the non-treated control group on postexposure day 3 and day 61. No histopathological changes were observed in the liver. The mRNA expression of a p53-related gene, the cyclin-dependent kinase inhibitor 1A, increased in 56MnO2 as well as in γ-ray irradiated groups on postexposure day 3 and day 61. The expression of a stress-responsive gene, nuclear factor κB, was also increased by 56MnO2 and γ-rays on postexposure day 3. However, the expression of cytokine genes (interleukin-6 or chemokine ligand 2) or fibrosis-related TGF-ß/Smad genes (Tgfb1, Smad3, or Smad4) was not altered by the exposure. Our data demonstrated that the internal exposure to 56MnO2 particles at less than 0.1 Gy significantly affected the short-term gene expressions in the liver in a similar manner with 2 Gy of external γ-irradiation. These changes may be adaptive responses because no changes occurred in cytokine or TGF-ß/Smad gene expressions.


Subject(s)
Cobalt Radioisotopes/administration & dosage , Gene Expression Regulation/radiation effects , Liver/radiation effects , Manganese Compounds/chemistry , Oxides/chemistry , Animals , Liver/metabolism , Liver/pathology , Liver/physiology , Male , Rats , Rats, Wistar
2.
Sci Rep ; 11(1): 11055, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040066

ABSTRACT

To understand the radiation effects of the atomic bombing of Hiroshima and Nagasaki among the survivors, radiation from neutron-induced radioisotopes in soil should be considered in addition to the initial radiation directly received from the bombs. 56Mn, which emits both ß particles and γ-rays, is one of the dominant radioisotopes created in soil by neutrons from the bomb. Thus we investigated the biological effects of internal exposure to 56MnO2 particle in the lung of male Wistar rats comparing to the effects of external 60Co-γ irradiation. Absorbed doses of internal irradiation of lungs were between 25 and 65 mGy in 56MnO2-exposed animals, while the whole body doses were between 41 and 100 mGy. Animals were examined on days 3 and 61 after the exposure. There were no remarkable pathological changes related to 56MnO2 particle exposure. However, mRNA and protein expressions of aquaporin 5 increased significantly in the lung tissue on day 3 postexposure in 56MnO2 groups (by 1.6 and 2.9 times, respectively, in the highest dose group). Smad7 mRNA expression was also significantly elevated by 30% in the highest dose group of 56MnO2. Our data demonstrated that internal exposure to 56MnO2 induced significant biological responses including gene expression changes in the lungs, while external 60Co-γ irradiation of 2 Gy did not show any changes.


Subject(s)
Lung/radiation effects , Soil Pollutants, Radioactive/administration & dosage , Animals , Lung/chemistry , Male , Radiation Dosage , Rats , Rats, Wistar , Soil Pollutants, Radioactive/analysis
3.
Radiat Environ Biophys ; 59(4): 683-692, 2020 11.
Article in English | MEDLINE | ID: mdl-32989569

ABSTRACT

The experiment was performed in support of a Japanese initiative to investigate the biological effects of irradiation from residual neutron-activated radioactivity that resulted from the A-bombing. Radionuclide 56Mn (T1/2 = 2.58 h) is one of the main neutron-activated emitters during the first hours after neutron activation of soil dust particles. In our previous studies (2016-2017) related to irradiation of male Wistar rats after dispersion of 56MnO2 powder, the internal doses in rats were found to be very inhomogeneous: distribution of doses among different organs ranged from 1.3 Gy in small intestine to less than 0.0015 Gy in some of the other organs. Internal doses in the lungs ranged from 0.03 to 0.1 Gy. The essential pathological changes were found in lung tissue of rats despite a low level of irradiation. In the present study, the dosimetry investigations were extended: internal doses in experimental mice and rats were estimated for various activity levels of dispersed neutron-activated 56MnO2 powder. The following findings were noted: (a) internal radiation doses in mice were several times higher in comparison with rats under similar conditions of exposure to 56MnO2 powder. (b) When 2.74 × 108 Bq of 56MnO2 powder was dispersed over mice, doses of internal irradiation ranged from 0.81 to 4.5 Gy in the gastrointestinal tract (small intestine, stomach, large intestine), from 0.096 to 0.14 Gy in lungs, and doses in skin and eyes ranged from 0.29 to 0.42 Gy and from 0.12 to 0.16 Gy, respectively. Internal radiation doses in other organs of mice were much lower. (c) Internal radiation doses were significantly lower in organs of rats with the same activity of exposure to 56MnO2 powder (2.74 × 108 Bq): 0.09, 0.17, 0.29, and 0.025 Gy in stomach, small intestine, large intestine, and lungs, respectively. (d) Doses of internal irradiation in organs of rats and mice were two to four times higher when they were exposed to 8.0 × 108 Bq of 56MnO2 (in comparison with exposure to 2.74 × 108 Bq of 56MnO2). (e) Internal radiation doses in organs of mice were 7-14 times lower with the lowest 56MnO2 amount (8.0 × 107 Bq) in comparison with the highest amount, 8.0 × 108 Bq, of dispersed 56MnO2 powder. The data obtained will be used for interpretation of biological effects in experimental mice and rats that result from dispersion of various levels of neutron-activated 56MnO2 powder, which is the subject of separate studies.


Subject(s)
Manganese Compounds/pharmacokinetics , Oxides/pharmacokinetics , Radioisotopes/pharmacokinetics , Animals , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Radiation Dosage , Rats, Wistar , Tissue Distribution
4.
Int J Mol Sci ; 21(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679808

ABSTRACT

To investigate the biological effects of internal exposure of radioactive 56MnO2 powder, the major radioisotope dust in the soil after atomic bomb explosions, on male reproductive function, the gene expression of the testes and the prostate was examined. Ten-week-old male Wistar rats were exposed to three doses of radioactive 56MnO2 powder (41-100 mGy in whole body doses), stable MnO2 powder, or external 60Co γ-rays (2 Gy). Animals were necropsied on Days 3 and 61 postexposure. The mRNA expressions of testicular marker protein genes and prostatic secretory protein genes were quantified by Q-RT-PCR. On Day 3 postexposure, the testicular gene expressions of steroidogenesis-related enzymes, Cyp17a1 and Hsd3b1, decreased in 56MnO2-exposed groups. Germ cell-specific Spag4 and Zpbp mRNA levels were also reduced. On postexposure Day 61, the Cyp11a1 gene expression became significantly reduced in the testes in the group exposed to the highest dose of 56MnO2, while another steroidogenesis-related StAR gene mRNA level reduced in the 60Co γ-rays group. There were no differences in Spag4 and Zpbp mRNA levels among groups on Day 61. No histopathological changes were observed in the testes in any group following exposure. Expression in the prostatic protein genes, including CRP1, KS3, and PSP94, significantly decreased in 56MnO2-exposed groups as well as in the 60Co γ-rays group on Day 61 postexposure. These data suggest that the internal exposure to 56MnO2 powder, at doses of less than 100 mGy, affected the gene expressions in the testis and the prostate, while 2 Gy of external γ-irradiation was less effective.


Subject(s)
Gene Expression Regulation/radiation effects , Manganese Compounds/adverse effects , Oxides/adverse effects , Prostate/radiation effects , Radiation Exposure/adverse effects , Soil Pollutants, Radioactive/adverse effects , Testis/radiation effects , Animals , Gamma Rays/adverse effects , Male , Nuclear Weapons , Prostate/metabolism , Radiation Dosage , Rats, Wistar , Testis/metabolism
5.
Eurasian J Med ; 52(1): 52-56, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32158315

ABSTRACT

OBJECTIVE: The pathological effects of internal exposure to manganese dioxide-56 (56MnO2) radioisotope particles have been previously examined in rats. Here we further examine the effects of 56MnO2, focusing on changes in blood parameters. MATERIALS AND METHODS: Ten-week-old male Wistar rats were exposed to 3 doses of neutron-activated 56MnO2 powder, nonradioactive MnO2 powder, or external 60Co γ-rays (1 Gy, whole body). On days 3 and 61 postexposure, the animals were necropsied to measure organ weights and clinical blood parameters, including red blood cell and white blood cell counts; concentrations of calcium, phosphorus, potassium, and sodium; and levels of alanine aminotransferase (ALT), aspartate aminotransferase, amylase, creatinine, urea, total protein, albumin, triglycerides, high density lipoprotein, total cholesterol, and glucose. RESULTS: In the 56MnO2-exposed animals, accumulated doses were found to be highest in the gastrointestinal tract, followed by the skin and lungs, with whole-body doses ranging from 41 to 100 mGy. There were no 56MnO2 exposure-related changes in body weights or relative organ weights. The ALT level decreased on day 3 and then significantly increased on day 61 in the 56MnO2-exposed groups. There were no exposure-related changes in any other blood parameters. CONCLUSION: Although the internal doses were less than 100 mGy, internal exposure of 56MnO2 powder showed significant biological impacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...