Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
ACS Omega ; 9(18): 19786-19795, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737020

ABSTRACT

This study looked at using modified camelina oil to develop sustainable coatings that could replace those derived from petroleum-based materials for use in packaging and other industrial sectors. Solvent-free synthesis of maleic anhydride grafted camelina oil (MCO) was carried out at two different temperatures (200 and 230 °C) to obtain sustainable hydrophobic coating materials for paper substrates. Maleic anhydride grafting of camelina oil was confirmed with attenuated total reflectance-Fourier transform infrared and NMR spectroscopic techniques, and up to 16% grafting of maleic anhydride was achieved, as determined by the titration method. MCO, obtained at different reaction temperatures, was coated onto cellulosic paper and evaluated for its hydrophobicity, mechanical, oxygen, and water vapor barrier properties. Scanning electron microscopy indicated the homogeneous dispersion of coating material onto the paper substrate. MCO-coated papers (MCO-200C paper and MCO-230C paper) provided a water contact angle of above 90° which indicates that the modified oil was working as a hydrophobic coating. Water vapor permeability (WVP) testing of coated papers revealed a reduction in WVP of up to 94% in comparison to the uncoated paper. Moreover, an improved oxygen barrier property was also observed for paper coated with both types of MCO. Analysis of the mechanical properties showed a greater than 70% retention of tensile strength and up to a five-fold increase in elongation at break of coated versus uncoated papers. Overall, the results show that camelina oil, a renewable resource, can be modified to produce environmentally friendly hydrophobic coating materials with improved mechanical and water vapor barrier properties that can serve as a potential coating material in the packaging industry. The results of this research could find applications in the huge paper packaging industries, specially in food packaging.

2.
Int J Biol Macromol ; 253(Pt 4): 126751, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37678682

ABSTRACT

This study utilized post-industrial wheat starch (biological macromolecule) for the development of poly(butylene adipate-co-terephthalate) (PBAT) based thermoplastic starch blend (TPS) and biocomposite films. PBAT (70 wt%) was blended with plasticized post-industrial wheat starch (PPWS) (30 wt%) and reinforced with talc master batch (MB) (25 wt%) using a two-step process, consisting of compounding the blend for pellet preparation, followed by the cast film extrusion at 160 °C. The effect of the chain extender was analyzed at compounding temperatures of 160 and 180 °C for talc-based composites. The incorporation of talc MB has increased the thermal stability of the biocomposites due to the nucleating effect of talc. Moreover, tensile strength and Young's modulus increased by about 5 and 517 %, respectively as compared with the TPS blend film without talc MB. Thermal, rheological, and morphological analyses confirmed that the use of talc in the presence of chain extender at a processing temperature of 160 °C has resulted in an enhanced dispersion of talc and chain entanglement with PBAT and PPWS than PBAT/PPWS blend and PBAT/PPWS/Talc composite films. On the other hand, at 180 °C, the talc-containing biocomposite with chain extender tended to form PPWS agglomerates, thereby weakening its material properties.


Subject(s)
Polyesters , Talc , Starch , Tensile Strength , Temperature
3.
Int J Biol Macromol ; 253(Pt 1): 126231, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37567528

ABSTRACT

Being less dependent on non-renewable resources as well as protecting the environment from waste streams have become two critical primers for a global movement toward replacing conventional plastics with renewable and biodegradable polymers. Despite all these efforts, only a few biodegradable polymers have paved their way successfully into the market. Polylactic acid is one of these biodegradable polymers that has been investigated thoroughly by researchers as well as manufactured on a large industrial scale. It is synthesized from lactic acid obtained mainly from the biological fermentation of carbohydrates, which makes this material a renewable polymer. Besides its renewability, it benefits from some attractive mechanical performances including high strength and stiffness, though brittleness is a major drawback of this biopolymer. Accordingly, the development of blends and biocomposites based on polylactic acid with highly flexible biodegradable polymers, specifically poly(butylene adipate co terephthalate) has been the objective of many investigations recently. This paper focuses on the blends and biocomposites based on these two biopolymers, specifically their mechanical, rheological, and biodegradation, the main characteristics that are crucial for being considered as a biodegradable substitution for conventional non-biodegradable polymers.


Subject(s)
Polyesters , Polymers , Plastics , Biopolymers/metabolism
5.
J Biomed Semantics ; 14(1): 8, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37464259

ABSTRACT

BACKGROUND: Clinical decision support systems have been widely deployed to guide healthcare decisions on patient diagnosis, treatment choices, and patient management through evidence-based recommendations. These recommendations are typically derived from clinical practice guidelines created by clinical specialties or healthcare organizations. Although there have been many different technical approaches to encoding guideline recommendations into decision support systems, much of the previous work has not focused on enabling system generated recommendations through the formalization of changes in a guideline, the provenance of a recommendation, and applicability of the evidence. Prior work indicates that healthcare providers may not find that guideline-derived recommendations always meet their needs for reasons such as lack of relevance, transparency, time pressure, and applicability to their clinical practice. RESULTS: We introduce several semantic techniques that model diseases based on clinical practice guidelines, provenance of the guidelines, and the study cohorts they are based on to enhance the capabilities of clinical decision support systems. We have explored ways to enable clinical decision support systems with semantic technologies that can represent and link to details in related items from the scientific literature and quickly adapt to changing information from the guidelines, identifying gaps, and supporting personalized explanations. Previous semantics-driven clinical decision systems have limited support in all these aspects, and we present the ontologies and semantic web based software tools in three distinct areas that are unified using a standard set of ontologies and a custom-built knowledge graph framework: (i) guideline modeling to characterize diseases, (ii) guideline provenance to attach evidence to treatment decisions from authoritative sources, and (iii) study cohort modeling to identify relevant research publications for complicated patients. CONCLUSIONS: We have enhanced existing, evidence-based knowledge by developing ontologies and software that enables clinicians to conveniently access updates to and provenance of guidelines, as well as gather additional information from research studies applicable to their patients' unique circumstances. Our software solutions leverage many well-used existing biomedical ontologies and build upon decades of knowledge representation and reasoning work, leading to explainable results.


Subject(s)
Biological Ontologies , Decision Support Systems, Clinical , Humans , Software , Knowledge Bases , Publications
6.
Int J Clin Pediatr Dent ; 16(3): 464-473, 2023.
Article in English | MEDLINE | ID: mdl-37496945

ABSTRACT

Aim: To analyze the effectiveness of motivational interviewing (MI) compared to traditional health education among mothers in improving children's oral health and behavioral changes. Review methods: The search strategy was framed using relevant MeSH terms and free text terms in PubMed, Medical Literature Analysis and Retrieval System Online (MEDLINE), Directory of Open Access Journals (DOAJ), Cochrane Library, and Google Scholar for the articles published in the English language between 1st January 2000 and 31st December 2020. Only randomized controlled trials, non-randomized controlled trials, and clinical trials comparing MI with traditional health education were included. Cochrane risk of bias (ROB) tool was used for the quality assessment of the included studies, and Review Manager 5.3 software was used for computing results. Results: A total of 9 studies were included for qualitative synthesis and 5 for quantitative synthesis from an initial search of 3,708 articles. The cumulative mean difference for dental caries was -1.03 [95% confidence interval (CI)-1.37-0.70] p < 0.00001, for frequency of toothbrushing Pooled odds ratio was 1.69 (95% CI-0.68-4.25) p = 0.26 and for in-between snacking was 0.83 with (95% CI-0.48-1.44) p = 0.51. A significant difference was present in dental caries among children with mothers in the MI group, while no difference was present in in-between snacking and frequency of toothbrushing between both the groups. Conclusion: Motivational interviewing (MI) prove to be significantly effective in reducing newer dental caries for shorter duration; however, long-term effectiveness could not be assessed. Clinical significance: Motivational interviewing (MI) can be considered an effective and feasible method for oral health education to mothers, which will, in turn, improve the oral health of their children. Protocol registration: International prospective register of systematic reviews (PROSPERO) under registration code. CRD42021224278. How to cite this article: Karande PH, Shetty VB, Vinay V, et al. Comparative Evaluation of Oral Health and Behavior Changes in Children after Motivational Interviewing and Traditional Method of Oral Health Education among Mothers: A Systematic Review and Meta-analysis. Int J Clin Pediatr Dent 2023;16(3):464-473.

7.
Front Immunol ; 14: 1080853, 2023.
Article in English | MEDLINE | ID: mdl-36993964

ABSTRACT

A variety of B cell clones seed the germinal centers, where a selection stringency expands the fitter clones to generate higher affinity antibodies. However, recent experiments suggest that germinal centers often retain a diverse set of B cell clones with a range of affinities and concurrently carry out affinity maturation. Amid a tendency to flourish germinal centers with fitter clones, how several B cell clones with differing affinities can be concurrently selected remains poorly understood. Such a permissive selection may allow non-immunodominant clones, which are often rare and of low-affinity, to somatically hypermutate and result in a broad and diverse B cell response. How the constituent elements of germinal centers, their quantity and kinetics may modulate diversity of B cells, has not been addressed well. By implementing a state-of-the-art agent-based model of germinal center, here, we study how these factors impact temporal evolution of B cell clonal diversity and its underlying balance with affinity maturation. While we find that the extent of selection stringency dictates clonal dominance, limited antigen availability on follicular dendritic cells is shown to expedite the loss of diversity of B cells as germinal centers mature. Intriguingly, the emergence of a diverse set of germinal center B cells depends on high affinity founder cells. Our analysis also reveals a substantial number of T follicular helper cells to be essential in balancing affinity maturation with clonal diversity, as a low number of T follicular helper cells impedes affinity maturation and also contracts the scope for a diverse B cell response. Our results have implications for eliciting antibody responses to non-immunodominant specificities of the pathogens by controlling the regulators of the germinal center reaction, thereby pivoting a way for vaccine development to generate broadly protective antibodies.


Subject(s)
Germinal Center , T Follicular Helper Cells , B-Lymphocytes , Antigens , Dendritic Cells, Follicular
8.
ACS Environ Au ; 3(2): 58-75, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36941850

ABSTRACT

Valorization of food waste (FW) is instrumental for reducing the environmental and economic burden of FW and transitioning to a circular economy. The FW valorization process has widely been studied to produce various end-use products and summarize them; however, their economic, environmental, and social aspects are limited. This study synthesizes some of the valorization methods used for FW management and produces value-added products for various applications, and also discusses the technological advances and their environmental, economic, and social aspects. Globally, 1.3 billion tonnes of edible food is lost or wasted each year, during which about 3.3 billion tonnes of greenhouse gas is emitted. The environmental (-347 to 2969 kg CO2 equiv/tonne FW) and economic (-100 to $138/tonne FW) impacts of FW depend on the multiple parameters of food chains and waste management systems. Although enormous efforts are underway to reduce FW as well as valorize unavoidable FW to reduce environmental and economic loss, it seems the transdisciplinary approach/initiative would be essential to minimize FW as well as abate the environmental impacts of FW. A joint effort from stakeholders is the key to reducing FW and the efficient and effective valorization of FW to improve its sustainability. However, any initiative in reducing food waste should consider a broader sustainability check to avoid risks to investment and the environment.

9.
ACS Omega ; 8(2): 1946-1956, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687037

ABSTRACT

Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene adipate-co-terephthalate) (PBAT) blends hold great potential for use in sustainable packaging applications for their advanced performance. Understanding the structure-property relationship in the blends at various proportions is significantly important for their future application, which is addressed in this work. The study found that the inherent brittleness of PHBV can only be modified with the addition of 50 wt % PBAT, where co-continuous structures formed in the blend as revealed by scanning electron microscopy (SEM) analysis. The elongation at break (%) of the blends increased from 3.81 (30% PBAT) to 138.5% (50% PBAT) and 345.3% (70 wt % PBAT), respectively. The fibrous structures of the PBAT formed during breaking are beneficial for energy dissipation, which greatly increased the toughness of the blends. Both the SEM observation and glass-transition temperature study by dynamic mechanical analysis indicated that the PHBV and PBAT are naturally immiscible. However, by simply mixing the two polymers with different composition ratios, the properties including melt flow index, heat deflection temperature, and mechanical properties can be tailored for different processing methods and applications. Our research work herein illustrates the fundamental structure-property relationship in this popular blend of PHBV/PBAT, aiming to guide the future modification direction in improving their properties and realizing their commercial applications in different scenarios.

10.
Int J Biol Macromol ; 229: 1009-1022, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36549624

ABSTRACT

The objective of this study is to include 5 wt% silane-treated starch (S-t-Starch) into biodegradable flexible poly(butylene adipate-co-terephthalate) (PBAT)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blend matrix, which can facilitate superior barrier and balanced mechanical properties. With the intension of improving compatibilization between matrix and filler, starch (biological macromolecule) was efficiently treated with 15 wt% of 3-glycidoxypropyl trimethoxy silane (GPTMS), a coupling agent. Various analyses such as barrier, mechanical, thermal, surface morphology and rheological were performed using cast extruded PBAT/PHBV-based composite films. Comprehensive characterizations suggested that cast extruded PBAT/PHBV with 5 wt% S-t-Starch composites exhibited 91 and 82 % improvement in oxygen and water vapor barrier, respectively, compared to PBAT film. The increment in % crystallinity (as supported by DSC analysis) of PBAT/PHBV/5%S-t-Starch composite due to the silane component was one of the reasons for barrier improvement. The other reason was the improved interfacial adhesion between matrix and S-t-Starch particles (as supported by SEM analysis), which restricted the mobility of the polymer chains. The elongation at break (%EB) of the cast extruded PBAT/PHBV/5%Starch film was slightly improved from 536 to 542 % after silane treatment. Hence, the developed polymer composite in this research work can contribute to flexible packaging applications that require improved barrier properties.


Subject(s)
Plastics , Polyesters , Starch , Silanes , Tensile Strength , Polymers
11.
Int J Biol Macromol ; 225: 1291-1305, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36423810

ABSTRACT

Being aware of the global problem of plastic pollution, our society is claiming new bioplastics to replace conventional polymers. Balancing their mechanical performance is required to increase their presence in the market. Brittleness of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was attempted to be decreased by melt blending with flexible starch-based poly(butylene succinate-co-butylene adipate) (PBSA). An epoxy-functionalized chain extender was used to enhance interaction between both immiscible biopolyesters. Mechanical performance, morphology, rheology, and crystallization behavior of injection-molded PHBV-PBSA blends (70-30, 50-50, and 30-70 wt%) were assessed in the presence and absence of the chain extender. Crystallization of PHBV was hindered, which was reflected in the improvement of mechanical properties. When PBSA >50 %, the homogeneity of results increased within the same sample while for PHBV-PBSA 70-30 wt% the elongation was 45 % higher. During the flexural test, it changed from brittle to non-breakable. The additive did not change the type of morphology developed by each blend nor the toughening mechanisms, so impact strength was barely affected. However, it reduced the size of dispersed phase domains due to a viscosity change, improving their processability. The higher the PHBV in the blend, the higher the effect of the chain extender.


Subject(s)
Polyesters , Starch , Polyesters/chemistry , Starch/chemistry , Crystallization , Plastics
12.
IEEE J Biomed Health Inform ; 27(2): 1084-1095, 2023 02.
Article in English | MEDLINE | ID: mdl-36355718

ABSTRACT

Randomized clinical trial (RCT) studies are the gold standard for scientific evidence on treatment benefits to patients. RCT outcomes may not be generalizable to clinical practice if the trial population is not representative of the patients for which the treatment is intended. Specifically, enrollment plans may not adequately include groups of patients with protected attributes, such as gender, race, or ethnicity. Inequities in RCTs are a major concern for funding agencies such as the National Institutes of Health (NIH) and for policy makers. We address this challenge by proposing a goal-programming approach, explicitly integrating measurable enrollment goals, to design equitable enrollment plans for RCTs. We evaluate our model in both single and multisite settings using the enrollment criteria and study population from the Systolic Blood Pressure Intervention Trial (SPRINT) study. Our model can successfully generate equitable enrollment plans that satisfy multiple goals such as sample representativeness and minimum total financial cost. Our model can detect deviations from a target plan during the enrollment process and update the plan to reduce deviations in the remaining process. Finally, through appropriate site selection in the planning stage, the model can demonstrate the possibility of enrolling a nationally representative study population if geographic constraints exist in multisite recruitment (e.g., clinical centers in a particular region). Our model can be used to prospectively produce and retrospectively evaluate how equitable enrollment plans are based on subjects' protected attributes, and it allows researchers to provide justifications on validity of scientific analysis and evaluation of subgroup disparities.


Subject(s)
Goals , Research Design , Humans
13.
RSC Adv ; 12(42): 27230-27245, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36321163

ABSTRACT

Global environmental pollution is a growing concern, especially the release of carbon dioxide from the use of petroleum derived materials which negatively impacts our environment's natural greenhouse gas level. Extensive efforts have been made to explore the conversion of renewable raw materials (vegetable oils) into bio-based products with similar or enhanced properties to those derived from petroleum. However, these edible plant oils, commonly used for human food consumption, are often not suitable raw materials for industrial applications. Hence, there is an increasing interest in exploring the use of non-edible plant oils for industrial applications. One such emerging oil seed crop is Camelina sativa, generally known as camelina, which has limited use as a food oil and so is currently being explored as a feedstock for various industrial applications in both Europe and North America. Camelina oil is highly unsaturated, making it an ideal potential AGH feedstock for the manufacture of lower carbon footprint, biobased products that reduce our dependency on petroleum resources and thus help to combat climate change. This review presents a brief description of camelina highlighting its composition and its production in comparison with traditional plant oils. The main focus is to summarize recent data on valorization of camelina oil by various chemical means, with specific emphasis on their industrial applications in biofuels, adhesives and coatings, biopolymers and bio-composites, alkyd resins, cosmetics, and agriculture. The review concludes with a discussion on current challenges and future opportunities of camelina oil valorization into various industrial products.

14.
ACS Environ Au ; 2(6): 510-522, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36411867

ABSTRACT

Upcycling of waste plastics diverts plastics from landfill, which helps in reducing greenhouse gas emissions. Graphitic carbon is an interesting material with a wide range of applications in electronics, energy storage, fuel cells, and even as advanced fillers for polymer composites. It is a very strong and highly conductive material consisting of weakly bound graphene layers arranged in a hexagonal structure. There are different ways of synthesizing graphitic carbons, of which the co-pyrolysis of biomass and plastic wastes is a promising approach for large-scale production. Highly graphitized carbon with surface areas in the range of 201 m2/g was produced from the co-pyrolysis of polyethylene and pinewood at 600 °C. Similarly, porous carbon having a superior discharge capacity (290 mAh/g) was developed from the co-pyrolysis of sugar cane and plastic polymers with catalysts. The addition of plastic wastes including polyethylene and high-density polyethylene to the pyrolysis of biomass tends to increase the surface area and improve the discharge capacity of the produced graphitic carbons. Likewise, temperature plays an important role in enhancing the carbon content and thereby the quality of the graphitic carbon during the co-pyrolysis process. The application of metal catalysts can reduce the graphitization temperature while at the same time improve the quality of the graphitic carbon by increasing the carbon contents. This work reports some typical graphitic carbon preparation methods from the co-pyrolysis of biomass and plastic wastes for the first time including thermochemical methods, exfoliation methods, template-based production methods, and salt-based methods. The factors affecting the graphitic char quality during the conversion processes are reviewed critically. Moreover, the current state-of-the-art characterization technologies such as Raman, scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy are discussed in detail, and finally, an overview on the applications, scalability, and future trends of graphitic-like carbons is highlighted.

15.
AMIA Jt Summits Transl Sci Proc ; 2022: 369-378, 2022.
Article in English | MEDLINE | ID: mdl-35854755

ABSTRACT

Understanding the complexity of care delivery and care coordination for patients with multiple chronic conditions is challenging. Network analysis can model the relationship between providers and patients to find factors associated with patient mortality. We constructed a network by connecting the providers through shared patients, which was then partitioned into tightly connected communities using a community detection algorithm. After adjusting for patient characteristics, the odds ratio of death for one standard deviation increase in degree centrality ratio between primary care providers (PCPs) and non-PCPs was 0.95 (0.92-0.98). Our result suggest that the centrality of PCPs may be a modifiable factor for improving care delivery. We demonstrated that network analysis can be used to find higher order features associated with health outcomes in addition to patient-level features.

16.
J Biomech Eng ; 144(11)2022 11 01.
Article in English | MEDLINE | ID: mdl-35678792

ABSTRACT

When runners impact the ground, they experience a sudden peak ground reaction force (GRF), which may be up to 4× greater than their bodyweight. Increased GRF impact peak magnitude has been associated with lower limb injuries in runners. Yet, shoe midsoles are capable of cushioning the impact between the runner and the ground to reduce GRF. It has been proposed that midsoles should be tunable with subject mass to minimize GRF and reduce risk of injury. Auxetic metamaterials, structures designed to achieve negative Poisson's ratios, demonstrate superior impact properties and are highly tunable. Recently, auxetic structures have been introduced in footwear, but their effects on GRF are not documented in literature. This work investigates the viability of a three-dimensional auxetic impact structure with a tunable force plateau as a midsole through mass-spring-damper simulation. An mass-spring-damper model was used to perform 315 simulations considering combinations of seven subject masses (45-90 kg), 15 auxetic plateau forces (72-1080 N), and three auxetic damping conditions (450, 725, and 1000 Ns/m) and regression analysis was used to determine their influence on GRF impact peak, energy, instantaneous, and average loading rate. Simulations showed that tuning auxetic plateau force and damping based on subject mass may reduce GRF impact and loading rate versus simulated conventional midsoles. Auxetic plateau force and damping conditions of 450 Ns/m and ∼1 bodyweight (BW), respectively, minimized peak impact GRF. This work demonstrates the need for tunable auxetic midsoles and may inform future work involving midsole testing.


Subject(s)
Shoes , Biomechanical Phenomena , Computer Simulation
17.
ACS Omega ; 7(2): 1612-1627, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35071857

ABSTRACT

The present work addresses the transformation of bio-oil into valuable biocarbon through slow pyrolysis. The biocarbons produced at three different temperatures (400, 600, and 900 °C), 10 °C min-1 heating rate, and 30 min holding time were tested for their surface morphology, thermal stability, elemental composition, functionality, particle size, and thermal and electrical conductivity. The physicochemical study of bio-oil showed substantial carbon content, higher heating value, and lower nitrogen content. Also, the Thermogravimetric analyzer-FourierTransform Infrared Spectroscopy (TGA-FTIR) study of bio-oil confirmed that the majority of gases released were hydrocarbons, carbonyl products, ethers, CO, and CO2, with a minor percentage of water and alcohol. Overall, it was found that the pyrolysis temperature has the dominant role in the yield and properties of biocarbon. The physicochemical characterization of biocarbon showed that the higher temperature based pyrolyzed biocarbon (600 and 900 °C) improved the properties in terms of thermal stability, thermal conductivity, graphitic content, ash content, and carbon content. Furthermore, the elemental and Energy-Dispersive Spectroscopy study of biocarbon confirmed the substantial depletion in oxygen and hydrogen at a higher temperature (600 and 900 °C) than the lower temperature based pyrolyzed biocarbon (400 °C). Additionally, the purest form of the biocarbon is found at a higher temperature (900 °C) with higher thermal stability and carbon content. The study of the surface morphology of biocarbon revealed that the higher temperature (600 and 900 °C) biocarbon showed larger and harder particles than the lower temperature biocarbon (400 °C); however, the electrical conductivity of biocarbon decreased, whereas thermal conductivity increased, with an increase in the pyrolysis temperatures. Moreover, the particle size analysis of biocarbon confirmed that most of the particles were found in the range of 1 µm. The increased thermal stability, carbon content, and graphitic content and the lower ash content endorse biocarbon as an excellent feedstock for carbon-based energy storage materials.

18.
Front Immunol ; 12: 776933, 2021.
Article in English | MEDLINE | ID: mdl-34917089

ABSTRACT

The efficacy of COVID-19 vaccines appears to depend in complex ways on the vaccine dosage and the interval between the prime and boost doses. Unexpectedly, lower dose prime and longer prime-boost intervals have yielded higher efficacies in clinical trials. To elucidate the origins of these effects, we developed a stochastic simulation model of the germinal center (GC) reaction and predicted the antibody responses elicited by different vaccination protocols. The simulations predicted that a lower dose prime could increase the selection stringency in GCs due to reduced antigen availability, resulting in the selection of GC B cells with higher affinities for the target antigen. The boost could relax this selection stringency and allow the expansion of the higher affinity GC B cells selected, improving the overall response. With a longer dosing interval, the decay in the antigen with time following the prime could further increase the selection stringency, amplifying this effect. The effect remained in our simulations even when new GCs following the boost had to be seeded by memory B cells formed following the prime. These predictions offer a plausible explanation of the observed paradoxical effects of dosage and dosing interval on vaccine efficacy. Tuning the selection stringency in the GCs using prime-boost dosages and dosing intervals as handles may help improve vaccine efficacies.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Clonal Selection, Antigen-Mediated/immunology , Germinal Center/immunology , Host-Pathogen Interactions/immunology , SARS-CoV-2/immunology , Antigens/immunology , B-Lymphocytes/metabolism , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Dose-Response Relationship, Immunologic , Germinal Center/metabolism , Humans , Immunization, Secondary , Models, Theoretical , Vaccination , Vaccine Efficacy
19.
Polymers (Basel) ; 13(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34641207

ABSTRACT

This paper studies the structure-property-processing relationship of polyphthalamide (PPA) PPA/polyamide 4,10 (PA410) blends, via co-relating their thermal-mechanical properties with their morphology, crystallization, and viscoelastic properties. When compared to neat PPA, the blends show improved processability with a lower processing temperature (20 °C lower than neat PPA) along with a higher modulus/strength and heat deflection temperature (HDT). The maximum tensile modulus is that of the 25PPA/75PA410 blend, ~3 GPa, 25% higher than neat PPA (~2.4 GPa). 25PPA/75PA410 also exhibits the highest HDT (136 °C) among all the blends, being 11% more than PPA (122 °C). The increase in the thermo-mechanical properties of the blends is explained by the partial miscibility between the two polymers. The blends improve the processing performance of PPA and broaden its applicability.

20.
J Med Internet Res ; 23(10): e25512, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34677131

ABSTRACT

BACKGROUND: Providing digital recordings of clinic visits to patients has emerged as a strategy to promote patient and family engagement in care. With advances in natural language processing, an opportunity exists to maximize the value of visit recordings for patients by automatically tagging key visit information (eg, medications, tests, and imaging) and linkages to trustworthy web-based resources curated in an audio-based personal health library. OBJECTIVE: This study aims to report on the user-centered development of HealthPAL, an audio personal health library. METHODS: Our user-centered design and usability evaluation approach incorporated iterative rounds of video-recorded sessions from 2016 to 2019. We recruited participants from a range of community settings to represent older patient and caregiver perspectives. In the first round, we used paper prototypes and focused on feature envisionment. We moved to low-fidelity and high-fidelity versions of the HealthPAL in later rounds, which focused on functionality and use; all sessions included a debriefing interview. Participants listened to a deidentified, standardized primary care visit recording before completing a series of tasks (eg, finding where a medication was discussed in the recording). In the final round, we recorded the patients' primary care clinic visits for use in the session. Findings from each round informed the agile software development process. Task completion and critical incidents were recorded in each round, and the System Usability Scale was completed by participants using the digital prototype in later rounds. RESULTS: We completed 5 rounds of usability sessions with 40 participants, of whom 25 (63%) were women with a median age of 68 years (range 23-89). Feedback from sessions resulted in color-coding and highlighting of information tags, a more prominent play button, clearer structure to move between one's own recordings and others' recordings, the ability to filter recording content by the topic discussed and descriptions, 10-second forward and rewind controls, and a help link and search bar. Perceived usability increased over the rounds, with a median System Usability Scale of 78.2 (range 20-100) in the final round. Participants were overwhelmingly positive about the concept of accessing a curated audio recording of a clinic visit. Some participants reported concerns about privacy and the computer-based skills necessary to access recordings. CONCLUSIONS: To our knowledge, HealthPAL is the first patient-centered app designed to allow patients and their caregivers to access easy-to-navigate recordings of clinic visits, with key concepts tagged and hyperlinks to further information provided. The HealthPAL user interface has been rigorously co-designed with older adult patients and their caregivers and is now ready for further field testing. The successful development and use of HealthPAL may help improve the ability of patients to manage their own care, especially older adult patients who have to navigate complex treatment plans.


Subject(s)
Caregivers , User-Centered Design , Adult , Aged , Aged, 80 and over , Ambulatory Care , Female , Humans , Middle Aged , Primary Health Care , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...