Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 11(2): 713-731, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35025506

ABSTRACT

Using Escherichia coli as the representative biofilm former, we report here the development of an in silico model built by simulating events that transform a free-living bacterial entity into self-encased multicellular biofilms. Published literature on ∼300 genes associated with pathways involved in biofilm formation was curated, static maps were created, and suitably interconnected with their respective metabolites using ordinary differential equations. Precise interplay of genetic networks that regulate the transitory switching of bacterial growth pattern in response to environmental changes and the resultant multicomponent synthesis of the extracellular matrix were appropriately represented. Subsequently, the in silico model was analyzed by simulating time-dependent changes in the concentration of components by using the R and python environment. The model was validated by simulating and verifying the impact of key gene knockouts (KOs) and systematic knockdowns on biofilm formation, thus ensuring the outcomes were comparable with the reported literature. Similarly, specific gene KOs in laboratory and pathogenic E. coli were constructed and assessed. MiaA, YdeO, and YgiV were found to be crucial in biofilm development. Furthermore, qRT-PCR confirmed the elevation of expression in biofilm-forming clinical isolates. Findings reported in this study offer opportunities for identifying biofilm inhibitors with applications in multiple industries. The application of this model can be extended to the health care sector specifically to develop novel adjunct therapies that prevent biofilms in medical implants and reduce emergence of biofilm-associated resistant polymicrobial-chronic infections. The in silico framework reported here is open source and accessible for further enhancements.


Subject(s)
Escherichia coli Infections , Escherichia coli , Bacteria , Biofilms , Computer Simulation , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Humans
2.
Sci Rep ; 8(1): 7263, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740005

ABSTRACT

The mechanism of efflux is a tour-de-force in the bacterial armoury that has thwarted the development of novel antibiotics. We report the discovery of a novel chemical series with potent antibacterial properties that was engineered to overcome efflux liability. Compounds liable to efflux specifically via the Resistance Nodulation and cell Division (RND) pump, AcrAB-TolC were chosen for a hit to lead progression. Using structure-based design, the compounds were optimised to lose their binding to the efflux pump, thereby making them potent on wild-type bacteria. We discovered these compounds to be pro-drugs that require activation in E. coli by specific bacterial nitroreductases NfsA and NfsB. Hit to lead chemistry led to the generation of compounds that were potent on wild-type and multi-drug resistant clinical isolates of E. coli, Shigella spp., and Salmonella spp. These compounds are bactericidal and efficacious in a mouse thigh infection model.


Subject(s)
Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli Proteins/chemistry , Prodrugs/chemistry , Thiophenes/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Cell Division/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Proteins/drug effects , Humans , Mice , Microbial Sensitivity Tests , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Protein Conformation/drug effects , Salmonella/chemistry , Salmonella/drug effects , Salmonella/pathogenicity , Shigella/chemistry , Shigella/drug effects , Shigella/pathogenicity , Thiophenes/chemical synthesis , Thiophenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...