Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Allergy ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38798015

ABSTRACT

BACKGROUND: The rise in asthma has been linked to different environmental and lifestyle factors including dietary habits. Whether dietary salt contributes to asthma incidence, remains controversial. We aimed to investigate the impact of higher salt intake on asthma incidence in humans and to evaluate underlying mechanisms using mouse models. METHODS: Epidemiological research was conducted using the UK Biobank Resource. Data were obtained from 42,976 participants with a history of allergies. 24-h sodium excretion was estimated from spot urine, and its association with asthma incidence was assessed by Cox regression, adjusting for relevant covariates. For mechanistic studies, a mouse model of mite-induced allergic airway inflammation (AAI) fed with high-salt diet (HSD) or normal-salt chow was used to characterize disease development. The microbiome of lung and feces (as proxy for gut) was analyzed via 16S rRNA gene based metabarcoding approach. RESULTS: In humans, urinary sodium excretion was directly associated with asthma incidence among females but not among males. HSD-fed female mice displayed an aggravated AAI characterized by increased levels of total IgE, a TH2-TH17-biased inflammatory cell infiltration accompanied by upregulation of osmosensitive stress genes. HSD induced distinct changes in serum short chain fatty acids and in both gut and lung microbiome, with a lower Bacteroidetes to Firmicutes ratio and decreased Lactobacillus relative abundance in the gut, and enriched members of Gammaproteobacteria in the lung. CONCLUSIONS: High dietary salt consumption correlates with asthma incidence in female adults with a history of allergies. Female mice revealed HSD-induced T-cell lung profiles accompanied by alterations of gut and lung microbiome.

3.
Microbiome ; 11(1): 162, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37496039

ABSTRACT

BACKGROUND: Darier's disease (DD) is a genodermatosis caused by mutations of the ATP2A2 gene leading to disrupted keratinocyte adhesion. Recurrent episodes of skin inflammation and infections with a typical malodour in DD indicate a role for microbial dysbiosis. Here, for the first time, we investigated the DD skin microbiome using a metabarcoding approach of 115 skin swabs from 14 patients and 14 healthy volunteers. Furthermore, we analyzed its changes in the context of DD malodour and the cutaneous DD transcriptome. RESULTS: We identified a disease-specific cutaneous microbiome with a loss of microbial diversity and of potentially beneficial commensals. Expansion of inflammation-associated microbes such as Staphylococcus aureus and Staphylococcus warneri strongly correlated with disease severity. DD dysbiosis was further characterized by abundant species belonging to Corynebacteria, Staphylococci and Streptococci groups displaying strong associations with malodour intensity. Transcriptome analyses showed marked upregulation of epidermal repair, inflammatory and immune defence pathways reflecting epithelial and immune response mechanisms to DD dysbiotic microbiome. In contrast, barrier genes including claudin-4 and cadherin-4 were downregulated. CONCLUSIONS: These findings allow a better understanding of Darier exacerbations, highlighting the role of cutaneous dysbiosis in DD inflammation and associated malodour. Our data also suggest potential biomarkers and targets of intervention for DD. Video Abstract.


Subject(s)
Darier Disease , Humans , Darier Disease/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Dysbiosis , Skin , Inflammation
4.
Handb Exp Pharmacol ; 268: 43-52, 2022.
Article in English | MEDLINE | ID: mdl-34114118

ABSTRACT

The skin barrier provides us with several lines of protection from outside hazards. Its most outward layers, the stratum corneum and the epidermis seal our body with an acidic, dry, and rather cool surface, hostile to microbes. Yet, there are also fine-tuned interactions between the mostly commensal microbiota on top of the skin surface, with underlying epidermal cells as well as the immune system, to preserve a healthy steady state and to initiate repair processes when necessary. We take a concise look at the recent insights on the inner workings of this complex barrier.


Subject(s)
Microbiota , Skin , Epidermis
5.
BMJ Open ; 12(9): e059256, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36691202

ABSTRACT

INTRODUCTION: The pathogenesis of atopic diseases is highly complex, and the exact mechanisms leading to atopic dermatitis (AD) onset in infants remain mostly enigmatic. In addition to an interdependent network of components of skin development in young age and skin barrier dysfunction underlying AD development that is only partially understood, a complex interplay between environmental factors and lifestyle habits with skin barrier and immune dysregulation is suspected to contribute to AD onset. This study aims to comprehensively evaluate individual microbiome and immune responses in the context of environmental determinants related the risk of developing AD in the first 4 years of a child's life. METHODS AND ANALYSES: The 'Munich Atopic Prediction Study' is a comprehensive clinical and biological investigation of a prospective birth cohort from Munich, Germany. Information on pregnancy, child development, environmental factors, parental exposures to potential allergens and acute or chronic diseases of children and parents are collected by questionnaires together with a meticulous clinical examination by trained dermatologists focusing on allergies, skin health, and in particular signs of AD at 2 months after birth and then every 6 months. In addition, skin barrier functions are assessed through cutometry, corneometry and transepidermal water loss at every visit. These measurements are completed with allergy diagnostics and extensive microbiome analyses from stool and skin swabs as well as transcriptome analyses using skin microbiopsies.The aim is to assess the relevance of different known and yet unknown risk factors of AD onset and exacerbations in infants and to identify possible accessible and robust biomarkers. ETHICS AND DISSEMINATION: The study is approved by the Ethical Committee of the Medical Faculty of the Technical University of Munich (reference 334/16S). All relevant study results will be presented at national and international conferences and in peer-reviewed journals.


Subject(s)
Dermatitis, Atopic , Hypersensitivity , Infant , Child , Female , Pregnancy , Humans , Child, Preschool , Dermatitis, Atopic/etiology , Prospective Studies , Birth Cohort , Risk Factors , Hypersensitivity/complications
6.
Microbiome ; 9(1): 123, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34039428

ABSTRACT

BACKGROUND: The identification of microbiota based on next-generation sequencing (NGS) of extracted DNA has drastically improved our understanding of the role of microbial communities in health and disease. However, DNA-based microbiome analysis cannot per se differentiate between living and dead microorganisms. In environments such as the skin, host defense mechanisms including antimicrobial peptides and low cutaneous pH result in a high microbial turnover, likely resulting in high numbers of dead cells present and releasing substantial amounts of microbial DNA. NGS analyses may thus lead to inaccurate estimations of microbiome structures and consequently functional capacities. RESULTS: We investigated in this study the feasibility of a Benzonase-based approach (BDA) to pre-digest unprotected DNA, i.e., of dead microbial cells, as a method to overcome these limitations, thus offering a more accurate assessment of the living microbiome. A skin mock community as well as skin microbiome samples were analyzed using 16S rRNA gene sequencing and metagenomics sequencing after DNA extraction with and without a Benzonase digest to assess bacterial diversity patterns. The BDA method resulted in less reads from dead bacteria both in the skin mock community and skin swabs spiked with either heat-inactivated bacteria or bacterial-free DNA. This approach also efficiently depleted host DNA reads in samples with high human-to-microbial DNA ratios, with no obvious impact on the microbiome profile. We further observed that low biomass samples generate an α-diversity bias when the bacterial load is lower than 105 CFU and that Benzonase digest is not sufficient to overcome this bias. CONCLUSIONS: The BDA approach enables both a better assessment of the living microbiota and depletion of host DNA reads. Video abstract.


Subject(s)
Bacteria , Metagenomics , Microbiota , Skin/microbiology , Bacteria/genetics , DNA/genetics , DNA, Bacterial/genetics , Endodeoxyribonucleases , Endoribonucleases , High-Throughput Nucleotide Sequencing , Humans , RNA, Ribosomal, 16S/genetics
8.
Iran J Pharm Res ; 16(1): 315-327, 2017.
Article in English | MEDLINE | ID: mdl-28496485

ABSTRACT

Rosmarinus officinalis L., a medicinal herb from the labiates family, has been reported to have potential benefit in the treatment and prevention of several diseases. In particular its phenolics have demonstrated protective effects on various types of cancer through several mechanisms. The present study aimed to determine the effects of rosemary phenolic extracts on human cell functions, with particular regard to their anti-proliferative properties in three cell types U937, CaCo-2 and the peripheral blood mononuclear cells (PBMCs). The radical scavenging and Ferric reducing abilities of the extracts have been assessed as well as their cyto-toxicity and effects on cell cycle distribution and apoptosis. About 13 compounds were identified with dominance of rosmarinic acid in the methanolic extract and phenolic diterpens in the ethyl acetate fraction (Carnosol, Carnosic acid and methyl Carnosate). The total polyphenolic content was important in the first extract with 2.589 ± 0.005 g/100 g in gallic acid equivalent compared to 0.763 ± 0.005 g/100 g. The methanolic fraction displayed higher antioxidant activity (DPPHIC50: 0.510 mg/mL and FRAP: 1.714 ± 0.068 mmol Fe2+/g) while ethyl acetate showed pronounced antiproliferative effects (IC50: 14.85 ± 0.20µg/mL and 14.95 ± 2.32 µg/mL respectively for U937 and CaCo-2 cells). The anti-proliferative effect was associated with a cell cycle arrest in S phase for U937 (62% of the population at 5 µg/mL) with a concomitant decrease in G1 and G2/M phases. Tested extracts displayed in addition early apoptotic effects in U937 and late apoptosis in CaCo-2 cells. The obtained data indicate that the identified phenolics are at least partially responsible for the observed cytotoxicity.

9.
Pharmacogn Mag ; 11(Suppl 1): S102-9, 2015 May.
Article in English | MEDLINE | ID: mdl-26109754

ABSTRACT

BACKGROUND: Rhamnus alaternus (Rhamnaceae) L. has been traditionally used for treatment of many diseases. OBJECTIVE: In this study, we determined the antioxidant/free radical scavenger properties, the flavonoid profile and the cytotoxicity of aqueous and methanolic extracts obtained by maceration from Algerian R. alaternus bark, like also of aqueous extract prepared by decoction according to the traditional method. This to estimate the usefulness of the drug traditional preparation and compare it with those made in the laboratory. MATERIALS AND METHODS: The antioxidant activity of the extracts was evaluated using five different redox-based assays, all involving one redox reaction with the oxidant. High-performance liquid chromatography/diode array detection/electrospray ionization mass spectrometry analysis was used to identify and quantify the flavonoids content. Cytotoxicity on human monocytic leukemia cells (U937) was also carried out. RESULTS: All the extracts tested showed a good antioxidant/free radical scavenger activity and a similar flavonoid fingerprint. However, the methanolic one presented the best antioxidant activity that can be due to the highest flavonoid amount and significantly reduced the proliferation of leukemia cells. The results confirm that the extract prepared by decoction contains efficient antioxidant compounds and this justifies in part the therapeutic and preventive usefulness. Moreover, the methanolic extract exerted excellent cytotoxicity on U937 that could be attributed to kaempferol and rhamnocitrin glycosides.

10.
Immunol Lett ; 166(1): 6-12, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25977118

ABSTRACT

Recent studies have indicated that different strains of Lactobacilli differ in their ability to regulate IL-12 production by dendritic cells (DCs), as some strains are stronger inducer of IL-12 while other are not and can even inhibit IL-12 production stimulated by IL-12-inducer Lactobacilli. In this report we demonstrate that Lactobacillus reuteri 5289, as previously described for other strains of L. reuteri, can inhibit DC production of IL-12 induced by Lactobacilllus acidophilus NCFM. Remarkably, L. reuteri 5289 was able to inhibit IL-12 production induced not only by Lactobacilli, as so far reported, but also by bacteria of different genera, including pathogens. We investigated in human DCs the signal transduction pathways involved in the inhibition of IL-12 production induced by L. reuteri 5289, showing that this potential anti-inflammatory activity, which is also accompanied by an elevated IL-10 production, is associated to a prolonged phosphorilation of ERK1/2 MAP kinase pathway. Improved understanding of the immune regulatory mechanisms exerted by Lactobacilli is crucial for a more precise employment of these commensal bacteria as probiotics in human immune-mediated pathologies, such as allergies or inflammatory bowel diseases.


Subject(s)
Dendritic Cells/immunology , Interleukin-12/immunology , Lactobacillus acidophilus/immunology , Limosilactobacillus reuteri/immunology , Signal Transduction/immunology , Anti-Inflammatory Agents/immunology , Antigens, CD/biosynthesis , B7-1 Antigen/biosynthesis , Cells, Cultured , Escherichia coli/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Immunoglobulins/biosynthesis , Inflammation/immunology , Interleukin-12/biosynthesis , Membrane Glycoproteins/biosynthesis , Pseudomonas aeruginosa/immunology , Staphylococcus aureus/immunology , p38 Mitogen-Activated Protein Kinases/metabolism , CD83 Antigen
SELECTION OF CITATIONS
SEARCH DETAIL
...