Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698519

ABSTRACT

Bacaba (Oenocarpus bacaba Mart.) is a native palm tree from Brazilian Amazon and Cerrado biomes. This tree produces a small, rounded fruit with dark skin and approximately 1.5 mm thick pulp, extensively utilized for palm heart extraction, juices, and jellies (De Cól et al. 2021). However, several diseases can adversely impact fruit yield and quality. During the 2021 growing season, anthracnose symptoms were observed in Bacaba fruits, with a disease incidence of 58% in fruits collected from the Abreulândia (9°37'15″ S, 49°9'3″ W) and Gurupi (12°25'46" S; 49°16'42" W) municipalities in Tocantins state, Brazil. A total of 198 fruits exhibiting anthracnose symptoms, characterized by deep necrotic spots, were collected. In the laboratory, symptomatic fruits had their external surfaces sterilized for 30 seconds in 70% ethanol, 1 min in 1.5% NaOCl, and then rinsed with sterile distilled water. Sterilized pieces of the fruit tissue were transferred to PDA medium and incubated for 7 days at 28 ºC with a 12 h photoperiod. After this period, two isolates were obtained from the colonies and were identified both macroscopically and microscopically as Colletotrichum sp. The colonies grown at PDA showed a white to grey cottony mycelia, with straight and fusiform conidia, ranging from 14.0 to 21.0 (mean value of 15.8 ± 1.8) µm in length and 4.0 to 7.0 (mean value of 5.5 ± 0.7) µm in width, (n = 50). For species identification, the intergenic spacer between DNA lyase, mating-type locus MAT1-2-1 (APN2/MAT-IGS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamine synthetase (GS), and ß-tubulin (TUB) loci were amplified and sequenced. Resulting sequences were deposited in GenBank (OR333843, OR333844, OR333845 and OR333846). BLAST analysis of the partial APN2/MAT-IGS (99%), GAPDH (99,48%), GS (99,32%) and TUB (99,48%) sequences showed highly similarity to C. siamense isolates (IIFT223 and CBS130147). Maximum likelihood multilocus analysis placed the isolate UFTC16 within the C. siamense clade with 98% bootstrap support, clearly assigning the isolate to this species. Morphological features were consistent with the description of C. siamense (Prihastuti et al., 2009). Inoculation of Bacaba fruits and seedlings was conducted to confirm pathogenicity. The surface of uninjured Bacaba fruits was inoculated with two drops (20 µL) of conidial suspension (106 conidia mL-1). The same methodology was adopted to placed healthy leaves of 35-day-old seedlings grown in plastic tubes. Two drops of sterile distilled water were inoculated on nonwounded healthy fruits and seedlings as a negative control. The fruits and seedlings were incubated for five days in a controlled chamber at 28 °C, 70-80% humidity and a "12-h photoperiod". The experiment was conducted with five replicates (five fruits and five seedlings inoculated per isolate) and repeated once. Typical symptoms of anthracnose were observed in the fruits and leaves of Bacaba seedlings five days after inoculation. No symptoms were observed in the negative control. The pathogen was reisolated from symptomatic fruits and leaves, showing similar morphological characteristics as the original isolate, fulfilling Koch's postulates. The identification of C. siamense as the causal agent of Bacaba anthracnose helps in the diagnosis and disease control strategies of the disease. Colletotrichum siamense is a cosmopolitan species and easily found in cultivated and non-cultivated species (Batista et al. 2023). However, to the best of our knowledge, this is the first report of C. siamense causing anthracnose on Bacaba.

2.
Fungal Biol ; 128(3): 1780-1789, 2024 May.
Article in English | MEDLINE | ID: mdl-38796262

ABSTRACT

Anthracnose caused by Colletotrichum is the most severe and widely occurring cashew disease in Brazil. Colletotrichum species are commonly found as pathogens, endophytes and occasionally as saprophytes in a wide range of hosts. The endophytic species associated with cashew trees are poorly studied. In this study, we report the Colletotrichum endophytic species associated with cashew trees in two locations in the state of Pernambuco, their prevalence in different plant organs (leaves, veins, branches and inflorescences), and compare the species in terms of pathogenicity and aggressiveness using different inoculation methods (wounded × unwounded). Six species of Colletotrichum were identified according to multilocus phylogenetic analyses, including Colletotrichum asianum, Colletotrichum chrysophilum, Colletotrichum karsti, Colletotrichum siamense, Colletotrichum theobromicola, and Colletotrichum tropicale. There were differences in the percentage of isolation in relation to the prevalence of colonized tissues and collection locations. C. tropicale was the prevalent species in both geographic areas and plant tissues collected, with no pattern of distribution of species between areas and plant tissues. All isolates were pathogenic in injured tissues of cashew plants. The best method to test the pathogenicity of Colletotrichum species was utilizing the combination of leaves + presence of wounds + conidial suspension, as it better represents the natural infection process. C. siamense was the most aggressive species.


Subject(s)
Anacardium , Colletotrichum , Endophytes , Phylogeny , Plant Diseases , Colletotrichum/genetics , Colletotrichum/classification , Colletotrichum/isolation & purification , Brazil , Anacardium/microbiology , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Plant Diseases/microbiology , DNA, Fungal/genetics , Multilocus Sequence Typing
3.
Mycologia ; 115(5): 661-673, 2023.
Article in English | MEDLINE | ID: mdl-37494636

ABSTRACT

Anthracnose caused by Colletotrichum species is one of the most important diseases of torch ginger. The disease leads to loss of aesthetic and commercial value of torch ginger stems. This study aimed to characterize Colletotrichum species associated with torch ginger anthracnose in the production areas of Pernambuco and Ceará. A total of 48 Colletotrichum isolates were identified using molecular techniques. Pathogenicity tests were performed on torch ginger with representative isolates. Phylogenetic analyses based on seven loci-DNA lyase (APN2), intergenic spacer between DNA lyase and the mating-type locus MAT1-2-1 (APN2/MAT-IGS), calmodulin (CAL), intergenic spacer between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a hypothetical protein (GAP2-IGS), glutamine synthetase (GS), and ß-tubulin (TUB2)-revealed that they belong to five known Colletotrichum species, namely, C. chrysophilum, C. fructicola, C. siamense, C. theobromicola, and C. tropicale, and three newly discovered species, described here as C. atlanticum, C. floscerae, and C. zingibericola. Of these, C. atlanticum was the most dominant. Pathogenicity assays showed that all isolates were pathogenic to torch ginger bracts. All species are reported for the first time associated with torch ginger in Brazil. The present study contributes to the current understanding of the diversity of Colletotrichum species associated with anthracnose on torch ginger and demonstrates the importance of accurate species identification for effective disease management strategies.


Subject(s)
Colletotrichum , Lyases , Zingiber officinale , Colletotrichum/genetics , Phylogeny , Zingiber officinale/genetics , Plant Diseases , DNA, Fungal/genetics , Lyases/genetics
4.
Plant Dis ; 2021 May 25.
Article in English | MEDLINE | ID: mdl-34032491

ABSTRACT

Cassava (Manihot esculenta Crantz) presents significant economic importance in Brazil and other developing countries due to its use in human and animal feeding. In 2019, cassava plants sampled in Pará state (Brazil) presented necrotic and irregular leaf spots, characteristic symptoms of cassava anthracnose. About 90% of the plants were symptomatic, and disease severity was higher during months with high temperature and humidity. Fragments of symptomatic tissues were removed from the lesion transition area, surface disinfested (45 s in 70% ethanol, 1 min in 1% NaOCl, and rinsed twice in sterile water), and plated on potato dextrose agar. Cultures were incubated at 25 °C under continuous light for 7 days. Among the obtained isolates, seven presented grey felt-like mycelium with white sectors, reverse greyish, and hyaline, aseptate, smooth-walled, falcate conidia with average size 20.7-30.7 (26.1 ± 2.1) × 2.4-4.8 (3.5 ± 0.5) µm. Phenotypical features were similar to C. truncatum (Damm et al. 2019). The representative isolate UFT/Coll87 was chosen for further assays. The identity of the isolate was determined by maximum likelihood analysis using sequences of actin (ACT, GenBank accession number MT321653), ß-tubulin (TUB2, MT856673) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, MT800857) partial regions. Colletotrichum isolate from cassava nested with C. truncatum isolates in a clade with 100% support, being confidently assigned to this species. Koch's postulates were fulfilled to confirm the pathogenicity of UFT/Coll87. Inoculation was carried out in three cassava plants by spraying a conidial suspension (106 conida mL-1) on unwounded leaves (three leaves per plant). Plants sprayed with sterile water represented negative control. Inoculated plants were kept in a humid chamber for 48 h, 25 °C, and a 12-h photoperiod. The experiment was repeated 2 times. Typical cassava anthracnose symptoms were observed 10 days after inoculation. No symptoms were observed in negative control. The pathogen was reisolated from symptomatic leaves and was phenotypically identical to the original isolate UFT/Coll87, fulfilling Koch's postulates. Colletotrichum fructicola, C. karstii, C. plurivorum, and C. siamense were reported causing cassava anthracnose in China (Liu et al. 2019). In Brazil, C. chrysophilum, C. fructicola, C. siamense and C. theobromicola were reported in association with cassava (Bragança et al. 2016; Oliveira et al. 2018; Machado et al. 2020). To our knowledge, this is the first report of C. truncatum causing cassava anthracnose worldwide. Our finding is important for disease management due to the high host range of C. truncatum. The pathogen can reduce the cassava yield, and the crop may serve as a potential inoculum source since it is commonly cultivated near to other crops that are also infected by C. truncatum.

SELECTION OF CITATIONS
SEARCH DETAIL
...