Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(11): e0207444, 2018.
Article in English | MEDLINE | ID: mdl-30475846

ABSTRACT

Extracellular vesicles (EVs) are important mediators of intercellular communication and have been implicated in myriad physiologic and pathologic processes within the hematopoietic system. Numerous factors influence the ability of EVs to communicate with target marrow cells, but little is known about how circadian oscillations alter EV function. In order to explore the effects of daily rhythms on EV-mediated intercellular communication, we used a well-established model of lung-derived EV modulation of the marrow cell transcriptome. In this model, co-culture of whole bone marrow cells (WBM) with lung-derived EVs induces expression of pulmonary specific mRNAs in the target WBM. To determine if daily rhythms play a role in this phenotype modulation, C57BL/6 mice were entrained in 12-hour light/12-hour dark boxes. Lungs harvested at discrete time-points throughout the 24-hour cycle were co-cultured across a cell-impermeable membrane with murine WBM. Alternatively, WBM harvested at discrete time-points was co-cultured with lung-derived EVs. Target WBM was collected 24hrs after co-culture and analyzed for the presence of pulmonary specific mRNA levels by RT-PCR. In both cases, there were clear time-dependent variations in the patterns of pulmonary specific mRNA levels when either the daily time-point of the lung donor or the daily time-point of the recipient marrow cells was altered. In general, WBM had peak pulmonary-specific mRNA levels when exposed to lung harvested at Zeitgeber time (ZT) 4 and ZT 16 (ZT 0 defined as the time of lights on, ZT 12 defined as the time of lights off), and was most susceptible to lung-derived EV modulation when target marrow itself was harvested at ZT 8- ZT 12. We found increased uptake of EVs when the time-point of the receptor WBM was between ZT 20 -ZT 24, suggesting that the time of day-dependent changes in transcriptome modulation by the EVs were not due simply to differential EV uptake. Based on these data, we conclude that circadian rhythms can modulate EV-mediated intercellular communication.


Subject(s)
Bone Marrow Cells/metabolism , Circadian Rhythm , Extracellular Vesicles/metabolism , Lung/metabolism , RNA, Messenger/biosynthesis , Transcriptome , Animals , Bone Marrow Cells/cytology , Male , Mice
2.
Cardiovasc Res ; 100(3): 354-62, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23867631

ABSTRACT

AIMS: Circulating endothelium-derived extracellular vesicles (EV) levels are altered in pulmonary arterial hypertension (PAH) but whether they are biomarkers of cellular injury or participants in disease pathogenesis is unknown. Previously, we found that lung-derived EVs (LEVs) induce bone marrow-derived progenitor cells to express lung-specific mRNA and protein. In this study, we sought to determine whether LEV or plasma-derived EV (PEV) alter pulmonary vascular endothelial or marrow progenitor cell phenotype to induce pulmonary vascular remodelling. METHODS AND RESULTS: LEV, PEV isolated from monocrotaline (MCT-EV)- or vehicle-treated mice (vehicle-EV) were injected into healthy mice. Right ventricular (RV) hypertrophy and pulmonary vascular remodelling were assessed by RV-to-body weight (RV/BW) and blood vessel wall thickness-to-diameter (WT/D) ratios. RV/BW, WT/D ratios were elevated in MCT- vs. vehicle-injected mice (1.99 ± 0.09 vs. 1.04 ± 0.09 mg/g; 0.159 ± 0.002 vs. 0.062 ± 0.009%). RV/BW, WT/D ratios were higher in mice injected with MCT-EV vs. mice injected with vehicle-EV (1.63 ± 0.09 vs. 1.08 ± 0.09 mg/g; 0.113 ± 0.02 vs. 0.056 ± 0.01%). Lineage-depleted bone marrow cells incubated with MCT-EV and marrow cells isolated from mice infused with MCT-EV had greater expression of endothelial progenitor cell mRNAs and mRNAs abnormally expressed in PAH than cells incubated with vehicle-EV or isolated from vehicle-EV infused mice. MCT-EV induced an apoptosis-resistant phenotype in murine pulmonary endothelial cells and lineage-depleted bone marrow cells incubated with MCT-EV induced pulmonary hypertension when injected into healthy mice. CONCLUSIONS: EV from MCT-injured mice contribute to the development of MCT-induced pulmonary hypertension. This effect may be mediated directly by EV on the pulmonary vasculature or by differentiation of bone marrow cells to endothelial progenitor cells that induce pulmonary vascular remodelling.


Subject(s)
Bone Marrow Cells/metabolism , Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Lung/blood supply , Monocrotaline , Stem Cells/metabolism , Transport Vesicles/metabolism , Animals , Apoptosis , Bone Marrow Cells/pathology , Bone Marrow Transplantation , Cell Differentiation , Cell Lineage , Cells, Cultured , Disease Models, Animal , Endothelial Cells/pathology , Familial Primary Pulmonary Hypertension , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Phenotype , RNA, Messenger/metabolism , Stem Cells/pathology , Time Factors , Transport Vesicles/pathology
3.
Stem Cells Dev ; 21(10): 1627-38, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22214238

ABSTRACT

We have shown that hematopoietic stem/progenitor cell phenotype and differentiative potential change throughout cell cycle. Lung-derived microvesicles (LDMVs) also change marrow cell phenotype by inducing them to express pulmonary epithelial cell-specific mRNA and protein. These changes are accentuated when microvesicles isolated from injured lung. We wish to determine if microvesicle-treated stem/progenitor cell phenotype is linked to cell cycle and to the injury status of the lung providing microvesicles. Lineage depleted, Sca-1+ (Lin-/Sca-1+) marrow isolated from mice were cultured with interleukin 3 (IL-3), IL-6, IL-11, and stem cell factor (cytokine-cultured cells), removed at hours zero (cell cycle phase G0/G1), 24 (late G1/early S), and 48 (late S/early G2/M), and cocultured with lung tissue, lung conditioned media (LCM), or LDMV from irradiated or nonirradiated mice. Alternatively, Lin-/Sca-1+ cells not exposed to exogenous cytokines were separated into G0/G1 and S/G2/M cell cycle phase populations by fluorescence-activated cell sorting (FACS) and used in coculture. Separately, LDMV from irradiated and nonirradiated mice were analyzed for the presence of adhesion proteins. Peak pulmonary epithelial cell-specific mRNA expression was seen in G0/G1 cytokine-cultured cells cocultured with irradiated lung and in late G1/early S cells cocultured with nonirradiated lung. The same pattern was seen in cytokine-cultured Lin-/Sca-1 cells cocultured with LCM and LDMV and when FACS-separated Lin-/Sca-1 cells unexposed to exogenous cytokines were used in coculture. Cells and LDMV expressed adhesion proteins whose levels differed based on cycle status (cells) or radiation injury (LDMV), suggesting a mechanism for microvesicle entry. These data demonstrate that microvesicle modification of progenitor/stem cells is influenced by cell cycle and the treatment of the originator lung tissue.


Subject(s)
Bone Marrow Cells/physiology , Cell Cycle , Cell Differentiation , Stem Cells/physiology , Transport Vesicles/physiology , Animals , Bone Marrow Cells/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cells, Cultured , Coculture Techniques , Culture Media, Conditioned , Cytokines/physiology , Gene Expression Profiling , Lung/cytology , Lung/radiation effects , Male , Mice , Mice, Inbred C57BL , Pulmonary Surfactant-Associated Proteins/metabolism , Stem Cells/metabolism , Transport Vesicles/metabolism
4.
Trans Am Clin Climatol Assoc ; 123: 152-66; discussion 166, 2012.
Article in English | MEDLINE | ID: mdl-23303982

ABSTRACT

The hierarchical models of stem cell biology have been based on work first demonstrating pluripotental spleen-colony-forming units, then showing progenitors with many differentiation fates assayed in in vitro culture; there followed the definition and separation of "stem cells" using monoclonal antibodies to surface epitopes and fluorescent-activated cell characterization and sorting (FACS). These studies led to an elegant model of stem cell biology in which primitive dormant G0 stem cells with tremendous proliferative and differentiative potential gave rise to progressively more restricted and differentiated classes of stem/progenitor cells, and finally differentiated marrow hematopoietic cells. The holy grail of hematopoietic stem cell biology became the purification of the stem cell and the clonal definition of this cell. Most recently, the long-term repopulating hematopoietic stem cell (LT-HSC) has been believed to be a lineage negative sca-1+C-kit+ Flk3- and CD150+ cell. However, a series of studies over the past 10 years has indicated that murine marrow stem cells continuously change phenotype with cell cycle passage. We present here studies using tritiated thymidine suicide and pyronin-Hoechst FACS separations indicating that the murine hematopoietic stem cell is a cycling cell. This would indicate that the hematopoietic stem cell must be continuously changing in phenotype and, thus, could not be purified. The extant data indicate that murine marrow stem cells are continually transiting cell cycle and that the purification has discarded these cycling cells. Further in vivo BrdU studies indicate that the "quiescent" LT-HSC in G0 rapidly transits cycle. Further complexity of the marrow stem cell system is indicated by studies on cell-derived microvesicles showing that they enter marrow cells and transcriptionally alter their cell fate and phenotype. Thus, the stem cell model is a model of continuing changing potential tied to cell cycle and microvesicle exposure. The challenge of the future is to define the stem cell population, not purify the stem cell. We are at the beginning of elucidation of quantum stemomics.


Subject(s)
Bone Marrow Cells/cytology , Cytoplasmic Vesicles/physiology , Hematopoietic Stem Cells/cytology , Stem Cells/cytology , Animals , Bone Marrow Cells/physiology , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Proliferation , Hematopoietic Stem Cells/physiology , Humans , In Vitro Techniques , Mice , Phenotype , Stem Cells/physiology
5.
Article in English | MEDLINE | ID: mdl-24009878

ABSTRACT

BACKGROUND: Interest has been generated in the capacity of cellular-derived microvesicles to alter the fate of different target cells. Lung, liver, heart and brain-derived vesicles can alter the genetic phenotype of murine marrow cells; however, the stability of such changes and the mechanism of these changes remain unclear. In the present work, we show that lung-derived microvesicles (LDMV) alter the transcriptome and proteome of target marrow cells initially by mRNA and regulator(s) of transcription transfer, but that long term phenotype change is due solely to transfer of a transcriptional regulator with target cell. IN VIVO STUDIES: Whole bone marrow cells (WBM) were co-cultured with LDMV (both isolated from male C57BL/6 mice) or cultured alone (control). One week later, cultured WBM was transplanted into lethally-irradiated female C57BL/6 mice. Recipient mice were sacrificed 6 weeks later and WBM, spleens and livers were examined for the presence of lung-specific gene expression, including surfactants A, B, C and D, aquaporin-5, and clara cell specific protein, via real-time RT-PCR. Immunohistochemistry was also performed on lungs to determine the number of transplanted marrow-derived (Y chromosome+) type II pneumocytes (prosurfactant C+). Mice transplanted with LDMV co-cultured WBM expressed pulmonary epithelial cell genes in the cells of their bone marrow, livers and spleens and over fivefold more transplanted marrow-derived Y+/prosurfactant C+cells could be found in their lungs (vs. control mice). IN VITRO STUDIES: WBM (from mice or rats) was cultured with or without LDMV (from mice or rats) for 1 week then washed and cultured alone. WBM was harvested at 2-week intervals for real-time RT-PCR analysis, using species-specific surfactant primers, and for Western Blot analysis. Proteomic and microRNA microarray analyses were also performed on cells. LDMV co-cultured WBM maintained expression of pulmonary epithelial cell genes and proteins for up to 12 weeks in culture. Surfactant produced at later time points was specific only to the species of the marrow cell in culture indicating de novo mRNA transcription. These findings, in addition to the altered protein and microRNA profiles of LDMV co-cultured WBM, support a stable transcriptional mechanism for these changes. CONCLUSIONS: These data indicate that microvesicle alteration of cell fate is robust and long-term and represents an important new aspect of cellular biology.

6.
Cancer Lett ; 266(2): 249-62, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18400375

ABSTRACT

Over-expression of EGFR, as in most cases of ovarian cancer, is associated with advanced-stage disease and poor prognosis. Activation of EGFR signaling pathway is involved in increased cell proliferation, angiogenesis, metastasis and decreased apoptosis. Tyrosine kinase activity is essential for signal transduction and receptor down-regulation. However, we found in this study that tyrosine kinase activity is not necessary in ligand-induced EGFR down-regulation in ovarian cancer cell line CaOV3 cells. EGFR tyrosine kinase inhibitors, such as PD153035, AG1478, as well as non-specific tyrosine kinase inhibitor PP2 cannot reverse EGF-induced down-regulation of EGFR. These findings thus permit us to develop the following exciting but unconventional strategy to sensitize cancer cells, namely, by priming ovarian cancer cells with EGF and EGFR inhibitor PD153035, before chemotherapy. This priming procedure down-regulates EGFR without induction of mitogenic signals such as ERK and PI3K/AKT. EGF plus EGFR inhibitor-primed ovarian cancer cells display increased sensitivity to taxol-induced cell death, resistant to EGF-induced cell migration and cell proliferation as well as ERK and PI3K/AKT activation. Further studies showed that PD153035, which does not reverse ligand-induced EGFR down-regulation, blocks EGF-induced EGFR activation as well as EGFR's binding to c-cbl and Grb2. Taken together, we contend that priming with EGFR inhibitors plus EGF inhibits cell signaling pathways leading to cell proliferation and survival, while down-regulating EGFR. This priming approach sensitizes ovarian cancer cells and would ultimately result in better chemotherapeutical outcome.


Subject(s)
Antineoplastic Agents/pharmacology , Epidermal Growth Factor/pharmacology , ErbB Receptors/antagonists & inhibitors , Ovarian Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , ErbB Receptors/metabolism , Female , Mice , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Paclitaxel/toxicity , Signal Transduction
7.
Cancer Chemother Pharmacol ; 62(5): 857-65, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18214481

ABSTRACT

OBJECTIVE: Aquaporin (AQP) water channels are expressed in high-grade tumor cells of different tissue origins. Based on the involvement of AQPs in angiogenesis and cell migration as well as our previous studies which show that AQP3 is involved in human skin fibroblasts cell migration, in this study, we investigated whether AQP3 is expressed in cultured human ovarian cancer cell line CaOV3 cells, and whether AQP3 expression in these cells enhances cell migration and metastatic potential. METHODS: Cultured CaOV3 cells were treated with EGF and/or various reagents and subjected to cell migration assay by phagokinetic track mobility assay or biochemical analysis for expression or activation of proteins by SDS-PAGE/Western blot analysis. RESULTS: In this study, we demonstrate that AQP3 is expressed in CaOV3 cells. EGF induces CaOV3 migration and up-regulates AQP3 expression. EGF-induced cell migration is inhibited by specific AQP3 siRNA knockdown or AQP3 water transport inhibitor CuSO4 and NiCl2. We also find that curcumin, a well known anti-ovarian cancer drug, down-regulates AQP3 expression and reduces cell migration in CaOV3, and the effects of curcumin are mediated, at least in part, by its inhibitory effects on EGFR and downstream AKT/ERK activation. CONCLUSIONS: Collectively, our results provide evidence for AQP3-facilitated ovarian cancer cell migration, suggesting a novel function for AQP3 expression in high-grade tumors. The results that curcumin inhibits EGF-induced up-regulation of AQP3 and cell migration, provide a new explanation for the anticancer potential of curcumin.


Subject(s)
Antineoplastic Agents/pharmacology , Aquaporin 3/biosynthesis , Curcumin/pharmacology , Epidermal Growth Factor/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Aquaporin 3/antagonists & inhibitors , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Copper Sulfate/pharmacology , Epidermal Growth Factor/pharmacology , ErbB Receptors/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Female , Gene Knockdown Techniques , Humans , Nickel/pharmacology , Ovarian Neoplasms/pathology , Phosphoinositide-3 Kinase Inhibitors , RNA Interference , Up-Regulation/drug effects
8.
J Cell Physiol ; 215(2): 506-16, 2008 May.
Article in English | MEDLINE | ID: mdl-18064629

ABSTRACT

One of the major characteristics of human skin photoaging induced by ultraviolet (UV) radiation is the dehydration of the skin. Water movement across plasma membrane occurs via diffusion through lipid bilayer and via aquaporins (AQPs). We find that UV induces aquaporin-3 (AQP3) down-regulation in human skin keratinocytes. MEK/ERK inhibitors PD98059 and U0126 inhibit UV-induced down-regulation of AQP3. Antioxidant N-acetyl-L-cysteine or NAC blocks UV-induced MEK/ERK activation and down-regulation of AQP3. All-trans retinoic acid or atRA, while alone inducing AQP3 expression, attenuates UV-induced down-regulation of AQP3 and water permeability. Using special inhibitors, we find that activation of EGFR and inhibition on ERK activation are involved in atRA's protective effects against UV-induced AQP3 down-regulation. Using specific AQP3's water transport inhibitors and siRNA knockdown, we observe that AQP3 is involved in cell migration and in vitro wound healing. UV-induced AQP3 down-regulation results in reduced water permeability, decreased cell migration, and delayed wound healing, which are attenuated by atRA pretreatment. We conclude that atRA protects against UV-induced down-regulation AQP3 and decrease in water permeability, reduction in cell migration and delayed in vitro wound healing via trans-activation of EGFR and inhibition on ROS-mediated MEK/ERK pathway. This novel finding provides evidence to support possible involvement of AQP3 in UV induced skin dehydration.


Subject(s)
Aquaporin 3/metabolism , Keratinocytes/metabolism , Keratinocytes/radiation effects , Tretinoin/pharmacology , Water/metabolism , Acetylcysteine/pharmacology , Antioxidants/pharmacology , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/radiation effects , Cell Movement/physiology , Cells, Cultured , Down-Regulation/drug effects , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Genes, erbB-1 , Humans , Hydrogen Peroxide/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Oxidants/pharmacology , Time Factors , Transcriptional Activation/physiology , Ultraviolet Rays , Wound Healing/physiology
9.
J Cell Physiol ; 212(1): 252-63, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17301957

ABSTRACT

Ultraviolet radiation (UV) induces cell damages leading to skin photoaging and skin cancer. ATP-sensitive potassium (K(ATP)) channel openers (KCOs) have been shown to exert significant myocardial preservation and neuroprotection in vitro and in vivo, and yet the potential role of those KCOs in protection against UV-induced skin cell damage is unknown. We investigated the effects of pinacidil and diazoxide, two classical KCOs, on UV-induced cell death using cultured human keratinocytes (HaCat cells). Here, we demonstrated for the first time that Kir 6.1, Kir 6.2 and SUR2 subunits of K(ATP) channels are functionally expressed in HaCaT cells and both non-selective K(ATP) channel opener pinacidil and mitoK(ATP) (mitochondrial K(ATP)) channel opener diazoxide attenuated UV-induced keratinocytes cell death. The protective effects were abolished by both non-selective K(ATP) channel blocker glibenclamide and selective mitoK(ATP) channel blocker 5-hydroxydecanoate (5-HD). Also, activation of K(ATP) channel with pinacidil or diazoxide resulted in suppressive effects on UV-induced MAPK activation and reactive oxygen species (ROS) production. Unexpectedly, we found that the level of intracellular ROS was slightly elevated in HaCaT cells when treated with pinacidil or diazoxide alone. Furthermore, UV-induced mitochondrial membrane potential loss, cytochrome c release and ultimately apoptotic cell death were also inhibited by preconditioning with pinacidil and diazoxide, and their effects were reversed by glibenclamide and 5-HD. Taken together, we contend that mitoK(ATP) is likely to contribute the protection against UV-induced keratinocytes cell damage. Our findings suggest that K(ATP) openers such as pinacidil and diazoxide may be utilized to prevent from UV-induced skin aging.


Subject(s)
Adenosine Triphosphate/metabolism , Keratinocytes/cytology , Keratinocytes/radiation effects , Potassium Channels, Inwardly Rectifying/metabolism , Ultraviolet Rays/adverse effects , Diazoxide/pharmacology , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Humans , Keratinocytes/drug effects , Membrane Potential, Mitochondrial/drug effects , Pinacidil/pharmacology , Reactive Oxygen Species/metabolism , Time Factors , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...