Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Reprod Domest Anim ; 59(5): e14620, 2024 May.
Article in English | MEDLINE | ID: mdl-38798166

ABSTRACT

This study examines the impact of oxygen tension and embryo kinetics on gene transcription dynamics in pathways crucial for embryonic preimplantation development, including lipid metabolism, carbohydrate transport and metabolism, mitochondrial function, stress response, apoptosis and transcription regulation. Bovine embryos were generated in vitro and allocated into two groups based on oxygen tension (20% or 5%) at 18 h post insemination (hpi). At 40 hpi, embryos were categorized into Fast (≥4 cells) or Slow (2 cells) groups, resulting in four experimental groups: FCL20, FCL5, SCL20 and SCL5. Embryo collection also occurred at 72 hpi (16-cell stage; groups FMO20, FMO5, SMO20 and SMO5) and at 168 hpi (expanded blastocyst (BL) stage; groups FBL20, FBL5, SBL20 and SBL5). Pools of three embryos per group were analysed in four replicates using inventoried TaqMan assays specific for Bos taurus, targeting 93 genes. Gene expression patterns were analysed using the K-means algorithm, revealing three main clusters: genes with low relative abundance at the cleavage (CL) and 16-cell morula (MO) stages but increased at the BL stage (cluster 1); genes with higher abundances at CL but decreasing at MO and BL (cluster 2); and genes with low levels at CL, higher levels at MO and decreased levels at BL (cluster 3). Within each cluster, genes related to epigenetic mechanisms, cell differentiation events and glucose metabolism were particularly influenced by differences in developmental kinetics and oxygen tension. Fast-developing embryos, particularly those cultured under low oxygen tension, exhibited transcript dynamics more closely resembling that reported in vivo-produced embryos.


Subject(s)
Blastocyst , Embryo Culture Techniques , Embryonic Development , Gene Expression Regulation, Developmental , Oxygen , Animals , Cattle/embryology , Oxygen/metabolism , Embryo Culture Techniques/veterinary , Blastocyst/metabolism , Transcription, Genetic , Fertilization in Vitro/veterinary , Female
2.
Photochem Photobiol Sci ; 23(7): 1373-1392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733516

ABSTRACT

Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.


Subject(s)
Biodiversity , Brazil , Animals , Luminescence , Dinoflagellida , Fireflies , Cnidaria , Ecosystem
3.
Planta ; 260(1): 4, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775846

ABSTRACT

MAIN CONCLUSION: Natural selection influenced adaptive divergence between Cereus fernambucensis and Cereus insularis, revealing key genes governing abiotic stress responses and supporting neoteny in C. insularis. Uncovering the molecular mechanisms driving adaptive divergence in traits related to habitat adaptation remains a central challenge. In this study, we focused on the cactus clade, which includes Cereus sericifer F.Ritter, Cereus fernambucensis Lem., and Cereus insularis Hemsley. These allopatric species inhabit distinct relatively drier regions within the Brazilian Atlantic Forest, each facing unique abiotic conditions. We leveraged whole transcriptome data and abiotic variables datasets to explore lineage-specific and environment-specific adaptations in these species. Employing comparative phylogenetic methods, we identified genes under positive selection (PSG) and examined their association with non-synonymous genetic variants and abiotic attributes through a PhyloGWAS approach. Our analysis unveiled signatures of selection in all studied lineages, with C. fernambucensis northern populations and C. insularis showing the most PSGs. These PSGs predominantly govern abiotic stress regulation, encompassing heat tolerance, UV stress response, and soil salinity adaptation. Our exclusive observation of gene expression tied to early developmental stages in C. insularis supports the hypothesis of neoteny in this species. We also identified genes associated with abiotic variables in independent lineages, suggesting their role as environmental filters on genetic diversity. Overall, our findings suggest that natural selection played a pivotal role in the geographic range of these species in response to environmental and biogeographic transitions.


Subject(s)
Adaptation, Physiological , Cactaceae , Forests , Gene Expression Profiling , Phylogeny , Brazil , Cactaceae/genetics , Cactaceae/physiology , Adaptation, Physiological/genetics , Selection, Genetic , Transcriptome , Stress, Physiological/genetics , Gene Expression Regulation, Plant
4.
Heredity (Edinb) ; 132(6): 296-308, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38637723

ABSTRACT

Here we use population genomic data (ddRAD-Seq) and ecological niche modeling to test biogeographic hypotheses for the divergence of the island-endemic cactus species Cereus insularis Hemsl. (Cereeae; Cactaceae) from its sister species C. fernambucensis Lem. The Cereus insularis grows in the Fernando de Noronha Islands (FNI), a Neotropical archipelago located 350 km off the Brazilian Atlantic Forest (BAF) coast. Phylogeographic reconstructions support a northward expansion by the common ancestor of C. insularis and C. fernambucensis along the mainland BAF coast, with C. insularis diverging from the widespread mainland taxon C. fernambucensis after colonizing FNI in the late Pleistocene. The morphologically distinct C. insularis is monophyletic and nested within C. fernambucensis, as expected from a progenitor-derivative speciation model. We tested alternative biogeographic and demographic hypotheses for the colonization of the FNI using Approximate Bayesian Computation. We found the greatest support for a stepping-stone path that emerged during periods of decreased sea level (the "bridge" hypothesis), in congruence with historical ecological niche modeling that shows highly suitable habitats on stepping-stone islands during glacial periods. The outlier analyses reveal signatures of selection in C. insularis, suggesting a putative role of adaptation driving rapid anagenic differentiation of this species in FNI.


Subject(s)
Bayes Theorem , Cactaceae , Islands , Phylogeny , Phylogeography , Cactaceae/genetics , Brazil , Ecosystem , Genetics, Population
5.
J Mol Graph Model ; 128: 108721, 2024 05.
Article in English | MEDLINE | ID: mdl-38308972

ABSTRACT

The identification of protein-ligand interactions plays a pivotal role in elucidating biological processes and discovering potential bioproducts. Harnessing the capabilities of computational methods in drug discovery, we introduce an innovative Inverted Virtual Screening (IVS) pipeline. This pipeline Integrated molecular dynamics and docking analyses to ensure that protein structures are not only energetically favorable but also representative of stable conformations. The primary objective of this pipeline is to automate and streamline the analysis of protein-ligand interactions at both genomic and transcriptomic scales. In the contemporary post-genomic era, high-throughput computational screening for bioproducts, biological systems, and therapeutic drugs has become a cornerstone practice. This approach offers the promise of cost-effectiveness, time efficiency, and optimization of laboratory work. Nevertheless, a notable deficiency persists in the availability of efficient pipelines capable of automating the virtual screening process, seamlessly integrating input and output, and leveraging the full potential of open-source tools. To bridge this critical gap, we have developed a versatile pipeline known as BioProtIS. This tool seamlessly integrates a suite of state-of-the-art tools, including Modeller, AlphaFold, Gromacs, FPOCKET, and AutoDock Vina, thus facilitating the streamlined docking of ligands with an expansive repertoire of proteins sourced from genomes and transcriptomes, and substrates. To assess the pipeline's performance, we employed the transcriptomes of Cereus jamacaru (a cactus species) and Aspisoma lineatum (firefly), along with the genome of Homo sapiens. This integration not only improves the accuracy of ligand-protein interactions by minimizing replicability deviations but also optimizes the discovery process by enabling the simultaneous evaluation of multiple substrates. Furthermore, our pipeline accommodates distinct testing scenarios, such as blind docking or site-specific targeting, which are invaluable in applications ranging from drug repositioning to the exploration of new allosteric binding sites and toxicity assessments. BioProtIS has been designed with modularity at its core. This inherent flexibility empowers users to make custom modifications directly within the source code, tailoring the pipeline to their specific research needs. Moreover, it lays the foundation for seamless integration of diverse docking algorithms in future iterations, promising ongoing advancements in the field of computational biology. This pipeline is available for free distribution and can be download at: https://github.com/BBMDO/BioProtIS.


Subject(s)
Proteins , Transcriptome , Humans , Ligands , Molecular Docking Simulation , Proteins/chemistry , Genomics , Gene Expression Profiling
6.
Insect Mol Biol ; 33(2): 112-123, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37837289

ABSTRACT

Vision plays a vital biological role in organisms, which depends on the visual pigment molecules (opsin plus chromophore). The expansion or reduction of spectral channels in the organisms is determined by distinct opsin classes and copy numbers resulting from duplication or loss. Within Coleoptera, the superfamily Elateroidea exhibits a great diversity of morphological and physiological characteristics, such as bioluminescence, making this group an important model for opsin studies. While molecular and physiological studies have been conducted in Lampyridae and Elateridae, other families remain unexplored. Here, we reused transcriptome datasets from Elateroidea species, including members of Elateridae, Lampyridae, Phengodidae, Rhagophthalmidae, Cantharidae, and Lycidae, to detect the diversity of putative opsin genes in this superfamily. In addition, we tested the signature of sites under positive selection in both ultraviolet (UV)- and long-wavelength (LW)-opsin classes. Although the visual system in Elateroidea is considered simple, we observed events of duplication in LW- and UV-opsin, as well as the absence of UV-opsin in distinct families, such as larval Phengodidae individuals. We detected different copies of LW-opsins that were highly expressed in the eyes of distinct tribes of fireflies, indicating the possible selection of each copy during the evolution of the sexual mating to avoid spectrum overlapping. In Elateridae, we found that the bioluminescent species had a distinct LW-opsin copy compared with the non-bioluminescent species, suggesting events of duplication and loss. The signature of positive selection showed only one residue associated with the chromophore binding site in the Elateroidea, which may produce a bathochromic shift in the wavelength absorption spectra in this family. Overall, this study brings important content and fills gaps regarding opsin evolution in Elateroidea.


Subject(s)
Coleoptera , Opsins , Humans , Animals , Opsins/genetics , Transcriptome , Phylogeny , Coleoptera/genetics , Larva , Evolution, Molecular
7.
Sci Rep ; 13(1): 20635, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996522

ABSTRACT

The Arecaceae family has a worldwide distribution, especially in tropical and subtropical regions. We sequenced the chloroplast genomes of Acrocomia intumescens and A. totai, widely used in the food and energy industries; Bactris gasipaes, important for palm heart; Copernicia alba and C. prunifera, worldwide known for wax utilization; and Syagrus romanzoffiana, of great ornamental potential. Copernicia spp. showed the largest chloroplast genomes (C. prunifera: 157,323 bp and C. alba: 157,192 bp), while S. romanzoffiana and B. gasipaes var. gasipaes presented the smallest (155,078 bp and 155,604 bp). Structurally, great synteny was detected among palms. Conservation was also observed in the distribution of single sequence repeats (SSR). Copernicia spp. presented less dispersed repeats, without occurrence in the small single copy (SSC). All RNA editing sites were C (cytidine) to U (uridine) conversions. Overall, closely phylogenetically related species shared more sites. Almost all nodes of the phylogenetic analysis showed a posterior probability (PP) of 1.0, reaffirming the close relationship between Acrocomia species. These results elucidate the conservation among palm chloroplast genomes, but point to subtle structural changes, providing support for the evolutionary dynamics of the Arecaceae family.


Subject(s)
Arecaceae , Genome, Chloroplast , Phylogeny , Arecaceae/genetics , Arecaceae/chemistry
8.
ACS Synth Biol ; 12(10): 2819-2826, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37792474

ABSTRACT

Toehold switches are biosensors useful for the detection of endogenous and environmental RNAs. They have been successfully engineered to detect virus RNAs in cell-free gene expression reactions. Their inherent sequence programmability makes engineering a fast and predictable process. Despite improvements in the design, toehold switches suffer from leaky translation in the OFF state, which compromises the fold change and sensitivity of the biosensor. To address this, we constructed and tested signal amplification circuits for three toehold switches triggered by Dengue and SARS-CoV-2 RNAs and an artificial RNA. The serine integrase circuit efficiently contained leakage, boosted the expression fold change from OFF to ON, and decreased the detection limit of the switches by 3-4 orders of magnitude. Ultimately, the integrase circuit converted the analog switches' signals into digital-like output. The circuit is broadly useful for biosensors and eliminates the hard work of designing and testing multiple switches to find the best possible performer.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2/genetics , RNA , Integrases
9.
BMC Plant Biol ; 23(1): 497, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37845606

ABSTRACT

Phosphorus (P) imbalances are a recurring issue in cultivated soils with pastures across diverse regions. In addition to P deficiency, the prevalence of excess P in soil has escalated, resulting in damage to pasture yield. In response to this reality, there is a need for well-considered strategies, such as the application of silicon (Si), a known element for alleviating plant stress. However, the influence of Si on the morphogenetic and chemical attributes of forage grasses grown in various soils remains uncertain. Consequently, this study aimed to assess the impact of P deficiency and excess on morphogenetic and chemical parameters, as well as digestibility, in Zuri guinea grass cultivated in Oxisol and Entisol soils. It also sought to determine whether fertigation with nanosilica could mitigate the detrimental effects of these nutritional stresses. Results revealed that P deficiency led to a reduction in tiller numbers and grass protein content, along with an increase in lignin content. Conversely, P excess resulted in higher proportions of dead material and lignin, a reduced mass leaf: stem ratio in plants, and a decrease in dry matter (DM) yield. Fertigation with Si improved tillering and protein content in deficient plants. In the case of P excess, Si reduced tiller mortality and lignin content, increased the mass leaf:stem ratio, and enhanced DM yield. This approach also increased yields in plants with sufficient P levels without affecting grass digestibility. Thus, Si utilization holds promise for enhancing the growth and chemical characteristics of forage grasses under P stress and optimizing yield in well-nourished, adapted plants, promoting more sustainable pasture yields.


Subject(s)
Panicum , Phosphorus , Soil , Lignin , Panicum/physiology , Plants
10.
Sci Rep ; 13(1): 16040, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749306

ABSTRACT

Silicon (Si) fertilization is widely recognized to improve the development of crops, especially in tropical soils and cultivation under dryland management. Herein, our working hypothesis was that Si stoichiometry favors the efficient use of carbon (C), nitrogen (N), and phosphorus (P) in sugarcane plants. Therefore, a field experiment was carried out using a 3 × 3 factorial scheme consisting of three cultivars (RB92579, RB021754 and RB036066) and three forms of Si application (control without Si; sodium silicate spray at 40 mmol L-1 in soil during planting; sodium silicate spray at 40 mmol L-1 on leaves at 75 days after emergence). All Si fertilizations altered the elemental C and P stoichiometry and sugarcane yield, but silicon-induced responses varied depending on sugarcane cultivar and application method. The most prominent impacts were found in the leaf Si-sprayed RB92579 cultivar, with a significant increase of 7.0% (11 Mg ha-1) in stalk yield, 9.0% (12 Mg ha-1) in total recoverable sugar, and 20% (4 Mg ha-1) in sugar yield compared to the Si-without control. In conclusion, our findings clearly show that silicon soil and foliar fertilization alter C:N:P stoichiometry by enhancing the efficiency of carbon and phosphorus utilization, leading to improved sugarcane production and industrial quality.


Subject(s)
Saccharum , Silicon , Edible Grain , Carbon , Dietary Carbohydrates , Phosphorus , Soil , Fertilization
11.
Microbiol Resour Announc ; 12(9): e0037023, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37530542

ABSTRACT

Here, we report the draft genome sequence of Streptomyces IBSBF 2867T, associated with potato scab in Brazil. Genome analysis using the antiSMASH bioinformatics tool showed the presence of phytopathogenic biosynthetic pathways.

12.
Arq Bras Cir Dig ; 36: e1738, 2023.
Article in English | MEDLINE | ID: mdl-37436208

ABSTRACT

BACKGROUND: It is known that elective inguinal hernioplasties are safe procedures, but in an emergency setting, they have higher rates of complications and hospital costs. Despite this, quantitative studies on the subject in Brazil are still scarce. AIMS: To evaluate the trend in hospitalization rates, hospital mortality, and costs for inguinal hernia in an emergency, regarding gender and age group. METHODS: This is a time series study with data from the Unified Health System (SUS), at the national level, from 2010 to 2019. RESULTS: The overall hospitalization rate (p=0.007; b<0,02) in all age groups (p<0.005; b<0) in both genders indicated a decreasing trend. The general mortality rate in both genders and in most age groups showed an increasing trend (p<0.005), as well as the cost of hospitalization in all age groups of both genders. CONCLUSIONS: Urgent hospitalization rates for inguinal hernia in Brazil have shown a steady or decreasing trend; however, hospital mortality and costs per hospitalization have demonstrated an increasing trend in recent years.


Subject(s)
Hernia, Inguinal , Public Health , Humans , Male , Female , Hernia, Inguinal/surgery , Brazil/epidemiology , Hospitalization , Herniorrhaphy/methods
13.
Article in English | MEDLINE | ID: mdl-37319004

ABSTRACT

Two new actinobacteria, designated strains IBSBF 2807T and IBSBF 2953T, isolated from scab lesions on potato tubers grown in the southern Brazilian states of Rio Grande do Sul and Santa Catarina, respectively, were characterized and identified through a polyphasic approach. Phylogenetic analyses of 16S rRNA sequences revealed that these two strains belong to the genus Streptomyces. Multilocus sequence analysis using five concatenated genes, atpD, gyrB, recA, rpoB and trpB, allocated strains IBSBF 2807T and IBSBF 2953T in distinct branches of Streptomyces phytopathogenic strains. PCR-RFLP analysis of the atpD gene also confirmed that these strains differ from the type strains of Streptomyces associated with potato scab. The morphological, physiological and biochemical characterization, along with the overall genome-related index properties, indicated that these two strains could be distinguished from their closest phylogenetic relatives and each other. According to the data, IBSBF 2807T and IBSBF 2953T represent two new Streptomyces species related to potato scab. The proposed names for these strains are Streptomyces hilarionis sp. nov. (IBSBF 2807T=CBMAI 2674T=ICMP 24297T=MUM 22.66T) and Streptomyces hayashii sp. nov (IBSBF 2953T=CBMAI 2675T=ICMP 24301T=MUM 22.68T).


Subject(s)
Solanum tuberosum , Streptomyces , Fatty Acids/chemistry , Sequence Analysis, DNA , Solanum tuberosum/microbiology , Brazil , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition
14.
Sci Rep ; 13(1): 10284, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37355676

ABSTRACT

Silicon (Si) nanoparticles can attenuate nutritional disorders caused by phosphorus in forages through nutritional homeostasis. This paper aims to evaluate the effects of P deficiency and toxicity in Megathyrsus maximus cultivated in two types of soils and to verify whether Si application via fertigation can mitigate these imbalances. The following two experiments were carried out: cultivation of forage plants in pots with Entisol and Oxisol, in a 3 × 2 factorial design, with three nutritional levels of phosphorus (deficient, adequate, and excessive) and two Si concentrations in the irrigation water (0 and 1.5 mmol L-1). Height, number of tillers, rate of leaf senescence, dry matter production, C:N, C:Si, C:P, and N:P ratios; and C, P, and N use efficiencies were evaluated in two growth cycles. P imbalances hampered carbon assimilation, C:N:P homeostasis, and dry matter production. Nanosilica fertigation promoted silicon uptake, improving C:N:P homeostasis and nutritional efficiency in plants under P deficiency and toxicity. Leaf senescence was reduced with addition of Si in plants grown in Oxisol in the three nutritional states of P. Silicon attenuated the stress caused by P toxicity in Entisol and Oxisol, improving production in plants without nutritional stress in Oxisol. The supply of Si nanoparticles in the cultivation of M. maximus can contribute to a more efficient and sustainable use of phosphorus in pastures.


Subject(s)
Poaceae , Silicon , Silicon/pharmacology , Phosphorus , Plants , Water
16.
Gene ; 850: 146917, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36174905

ABSTRACT

Among bioluminescent beetles of the Elateroidea superfamily, Phengodidae is the third largest family, with 244 bioluminescent species distributed only in the Americas, but is still the least studied from the phylogenetic and evolutionary points of view. The railroad worm Phrixothrix hirtus is an essential biological model and symbolic species due to its bicolor bioluminescence, being the only organism that produces true red light among bioluminescent terrestrial species. Here, we performed partial genome assembly of P. hirtus, combining short and long reads generated with Illumina sequencing, providing the first source of genomic information and a framework for comparative analyses of the bioluminescent system in Elateroidea. This is the largest genome described in the Elateroidea superfamily, with an estimated size of ∼3.4 Gb, displaying 32 % GC content, and 67 % transposable elements. Comparative genomic analyses showed a positive selection of genes and gene family expansion events of growth and morphogenesis gene products, which could be associated with the atypical anatomical development and morphogenesis found in paedomorphic females and underdeveloped males. We also observed gene family expansion among distinct odorant-binding receptors, which could be associated with the pheromone communication system typical of these beetles, and retrotransposable elements. Common genes putatively regulating bioluminescence production and control, including two luciferase genes corresponding to lateral lanterns green-emitting and head lanterns red-emitting luciferases with 7 exons and 6 introns, and genes potentially involved in luciferin biosynthesis were found, indicating that there are no clear differences about the presence or absence of gene families associated with bioluminescence in Elateroidea.


Subject(s)
Coleoptera , Railroads , Animals , Female , Phylogeny , DNA Transposable Elements , Odorants , Coleoptera/genetics , Coleoptera/metabolism , Luciferases/metabolism , Morphogenesis , Pheromones
17.
ABCD (São Paulo, Online) ; 36: e1738, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447006

ABSTRACT

ABSTRACT BACKGROUND: It is known that elective inguinal hernioplasties are safe procedures, but in an emergency setting, they have higher rates of complications and hospital costs. Despite this, quantitative studies on the subject in Brazil are still scarce. AIMS: To evaluate the trend in hospitalization rates, hospital mortality, and costs for inguinal hernia in an emergency, regarding gender and age group. METHODS: This is a time series study with data from the Unified Health System (SUS), at the national level, from 2010 to 2019. RESULTS: The overall hospitalization rate (p=0.007; b<0,02) in all age groups (p<0.005; b<0) in both genders indicated a decreasing trend. The general mortality rate in both genders and in most age groups showed an increasing trend (p<0.005), as well as the cost of hospitalization in all age groups of both genders. CONCLUSIONS: Urgent hospitalization rates for inguinal hernia in Brazil have shown a steady or decreasing trend; however, hospital mortality and costs per hospitalization have demonstrated an increasing trend in recent years.


RESUMO RACIONAL: Sabe-se que as hernioplastias inguinais eletivas são procedimentos seguros, mas que, em caráter de urgência, têm maiores taxas de complicações e custos hospitalares. Apesar disso, ainda são escassos os estudos quantitativos sobre o tema no Brasil. OBJETIVOS: Avaliar a tendência das taxas de internação, mortalidade hospitalar e custos por hérnia inguinal em caráter de urgência, quanto ao sexo e faixa etária. MÉTODOS: Trata-se de um estudo de séries temporais com dados do Sistema Único de Saúde (SUS), em nível nacional, no período de 2010 a 2019. RESULTADOS: A taxa de internação geral (p=0,007; b<0,02) em todas as faixas etárias (p<0,005; b<0) nos dois sexos indicou tendência decrescente. A taxa de mortalidade geral em ambos os sexos e na maioria das faixas etárias apresentou tendência crescente (p<0,005), assim como o custo da internação em todas as faixas etárias de ambos os sexos. CONCLUSÕES: As taxas de internação em caráter de urgência por hérnia inguinal, no Brasil, apresentaram tendência estacionária ou decrescente, entretanto, a mortalidade hospitalar e os custos por internação mostraram tendência crescente nos últimos anos.

18.
Methods Mol Biol ; 2525: 409-423, 2022.
Article in English | MEDLINE | ID: mdl-35836087

ABSTRACT

Next-generation sequencing (NGS) has dominated the scene of genomics and evolutionary biology as a great amount of genomic data have been accumulated for a diverse set of species. At the same time, phylogenetic approaches and programs are in development to allow better use of such large-size datasets. Phylogenomics appears as a promising field to accommodate and explore all the information of NGS data in phylogenetic methods, being an important approach to investigate the evolution of bioluminescence in different organisms. To guarantee accurate results in phylogenomic studies, it is mandatory to correctly identify orthologous genes in phylogenetic reconstruction. Here, we show a simplified step-by-step framework to perform phylogenetic analysis along with divergence time estimation, beginning with an orthologous search. As empirical data, we exemplify transcriptome sequences of six species of the Elateroidea superfamily (Coleoptera). We introduce several bioinformatics tools for handling genomic data, especially those available in the software OrthoFinder, IQTREE, BEAST2, and TreePL.


Subject(s)
Coleoptera , Transcriptome , Animals , Computational Biology/methods , Genome , Genomics/methods , Phylogeny
19.
Genes (Basel) ; 13(4)2022 04 17.
Article in English | MEDLINE | ID: mdl-35456513

ABSTRACT

The molecular phylogenies of Cactaceae have enabled us to better understand their systematics, biogeography, and diversification ages. However, most of the phylogenetic relationships within Cactaceae major groups remain unclear, largely due to the lack of an appropriate set of molecular markers to resolve its contentious relationships. Here, we explored the genome and transcriptome assemblies available for Cactaceae and identified putative orthologous regions shared among lineages of the subfamily Cactoideae. Then we developed a probe set, named Cactaceae591, targeting both coding and noncoding nuclear regions for representatives from the subfamilies Pereskioideae, Opuntioideae, and Cactoideae. We also sampled inter- and intraspecific variation to evaluate the potential of this panel to be used in phylogeographic studies. We retrieved on average of 547 orthologous regions per sample. Targeting noncoding nuclear regions showed to be crucial to resolving inter- and intraspecific relationships. Cactaceae591 covers 13 orthologous genes shared with the Angiosperms353 kit and two plastid regions largely used in Cactaceae studies, enabling the phylogenies generated by our panel to be integrated with angiosperm and Cactaceae phylogenies, using these sequences. We highlighted the importance of using coalescent-based species tree approaches on the Cactaceae591 dataset to infer accurate phylogenetic trees in the presence of extensive incomplete lineage sorting in this family.


Subject(s)
Cactaceae , Cactaceae/genetics , Cell Nucleus/genetics , Genome , Phylogeny , Plastids/genetics
20.
Genes (Basel) ; 13(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-35328006

ABSTRACT

Here, we present a review of the studies of evolutionary genetics (phylogenetics, population genetics, and phylogeography) using genetic data as well as genome scale assemblies in Cactaceae (Caryophyllales, Angiosperms), a major lineage of succulent plants with astonishing diversity on the American continent. To this end, we performed a literature survey (1992-2021) to obtain detailed information regarding key aspects of studies investigating cactus evolution. Specifically, we summarize the advances in the following aspects: molecular markers, species delimitation, phylogenetics, hybridization, biogeography, and genome assemblies. In brief, we observed substantial growth in the studies conducted with molecular markers in the past two decades. However, we found biases in taxonomic/geographic sampling and the use of traditional markers and statistical approaches. We discuss some methodological and social challenges for engaging the cactus community in genomic research. We also stressed the importance of integrative approaches, coalescent methods, and international collaboration to advance the understanding of cactus evolution.


Subject(s)
Cactaceae , Bias , Cactaceae/genetics , Genetics, Population , Phylogeny , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL
...