Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Alzheimers Dement (Amst) ; 11: 439-449, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31245529

ABSTRACT

INTRODUCTION: Heterogeneity of segmentation protocols for medial temporal lobe regions and hippocampal subfields on in vivo magnetic resonance imaging hinders the ability to integrate findings across studies. We aim to develop a harmonized protocol based on expert consensus and histological evidence. METHODS: Our international working group, funded by the EU Joint Programme-Neurodegenerative Disease Research (JPND), is working toward the production of a reliable, validated, harmonized protocol for segmentation of medial temporal lobe regions. The working group uses a novel postmortem data set and online consensus procedures to ensure validity and facilitate adoption. RESULTS: This progress report describes the initial results and milestones that we have achieved to date, including the development of a draft protocol and results from the initial reliability tests and consensus procedures. DISCUSSION: A harmonized protocol will enable the standardization of segmentation methods across laboratories interested in medial temporal lobe research worldwide.

2.
Front Behav Neurosci ; 13: 51, 2019.
Article in English | MEDLINE | ID: mdl-30941021

ABSTRACT

Altered hippocampal morphology and reduced volumes have been found in children born preterm compared to full-term. Stress inhibits neurogenesis in the hippocampus, and neonatal stress/noxious stimulation in rodent pups are associated with long-term alterations in hippocampal volumes. We have previously shown reduced cortical thickness and cerebellar volumes in relation to more exposure to pain-related stress of neonatal invasive procedures in children born very preterm. We have reported targeted gene-by-pain environment interactions that contribute to long-term brain development and outcomes in this population. We now aim to determine whether exposure to pain-related stress (adjusted for clinical factors and genotype) differentially impacts regional structures within the limbic system and thalamus, and investigate relationships with outcomes in very preterm children. Our study included 57 children born very preterm (<32 weeks GA) followed longitudinally from birth who underwent 3-D T1 MRI neuroimaging at ∼8 years. Hippocampal subfields and white matter tracts, thalamus and amygdala were automatically segmented using the MAGeT Brain algorithm. The relationship between those subcortical brain volumes (adjusted for total brain volume) and neonatal invasive procedures, gestational age (GA), illness severity, postnatal infection, days of mechanical ventilation, number of surgeries, morphine exposure, and genotype (COMT, SLC6A4, and BDNF) was examined using constrained principal component analysis. We found that neonatal clinical factors and genotypes accounted for 46% of the overall variance in volumes of hippocampal subregions, tracts, basal ganglia, thalamus and amygdala. After controlling for clinical risk factors and total brain volume, greater neonatal invasive procedures was associated with lower volumes in the amygdala and thalamus (p = 0.0001) and an interaction with COMT genotype predicted smaller hippocampal subregional volume (p = 0.0001). More surgeries, days of ventilation, and lower GA were also related to smaller volumes in various subcortical regions (p < 0.002). These reduced volumes were in turn differentially related to poorer cognitive, visual-motor and behavioral outcomes. Our findings highlight the complexity that interplays when examining how exposure to early-life stress may impact brain development both at the structural and functional level, and provide new insight on possible novel avenues of research to discover brain-protective treatments to improve the care of children born preterm.

3.
Front Syst Neurosci ; 13: 87, 2019.
Article in English | MEDLINE | ID: mdl-32009912

ABSTRACT

White matter pathways that surround the hippocampus comprise its afferent and efferent connections, and are therefore crucial in mediating the function of the hippocampus. We recently demonstrated a role for the hippocampus in both spatial memory and olfactory identification in humans. In the current study, we focused our attention on the fimbria-fornix white matter bundle and investigated its relationship with spatial memory and olfactory identification. We administered a virtual navigation task and an olfactory identification task to 55 young healthy adults and measured the volume of the fimbria-fornix. We found that the volume of the right fimbria-fornix and its subdivisions is correlated with both navigational learning and olfactory identification in those who use hippocampus-based spatial memory strategies, and not in those who use caudate nucleus-based navigation strategies. These results are consistent with our recent finding that spatial memory and olfaction rely on similar neural networks and structures.

4.
Neuroimage ; 170: 132-150, 2018 04 15.
Article in English | MEDLINE | ID: mdl-27765611

ABSTRACT

Recently, much attention has been focused on the definition and structure of the hippocampus and its subfields, while the projections from the hippocampus have been relatively understudied. Here, we derive a reliable protocol for manual segmentation of hippocampal white matter regions (alveus, fimbria, and fornix) using high-resolution magnetic resonance images that are complementary to our previous definitions of the hippocampal subfields, both of which are freely available at https://github.com/cobralab/atlases. Our segmentation methods demonstrated high inter- and intra-rater reliability, were validated as inputs in automated segmentation, and were used to analyze the trajectory of these regions in both healthy aging (OASIS), and Alzheimer's disease (AD) and mild cognitive impairment (MCI; using ADNI). We observed significant bilateral decreases in the fornix in healthy aging while the alveus and cornu ammonis (CA) 1 were well preserved (all p's<0.006). MCI and AD demonstrated significant decreases in fimbriae and fornices. Many hippocampal subfields exhibited decreased volume in both MCI and AD, yet no significant differences were found between MCI and AD cohorts themselves. Our results suggest a neuroprotective or compensatory role for the alveus and CA1 in healthy aging and suggest that an improved understanding of the volumetric trajectories of these structures is required.


Subject(s)
Aging , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Fornix, Brain/anatomy & histology , Gray Matter/anatomy & histology , Hippocampus/anatomy & histology , Neuroimaging/methods , White Matter/anatomy & histology , Adolescent , Adult , Aged , Aged, 80 and over , Aging/pathology , Alzheimer Disease/diagnostic imaging , Atlases as Topic , CA1 Region, Hippocampal/anatomy & histology , CA1 Region, Hippocampal/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Female , Fornix, Brain/diagnostic imaging , Fornix, Brain/pathology , Gray Matter/diagnostic imaging , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
5.
Hum Brain Mapp ; 39(2): 971-984, 2018 02.
Article in English | MEDLINE | ID: mdl-29164798

ABSTRACT

Neuropathological and in vivo brain imaging studies agree that the cornu ammonis 1 and subiculum subfields of the hippocampus are most vulnerable to atrophy in the prodromal phases of Alzheimer's disease (AD). However, there has been limited investigation of the structural integrity of the components of the hippocampal circuit, including subfields and extra-hippocampal white matter structure, in relation to the progression of well-accepted cerebrospinal fluid (CSF) biomarkers of AD, amyloid-ß 1-42 (Aß) and total-tau (tau). We investigated these relationships in 88 aging asymptomatic individuals with a parental or multiple-sibling familial history of AD. Apolipoprotein (APOE) ɛ4 risk allele carriers were identified, and all participants underwent cognitive testing, structural magnetic resonance imaging, and lumbar puncture for CSF assays of tau, phosphorylated-tau (p-tau) and Aß. Individuals with a reduction in CSF Aß levels (an indicator of amyloid accretion into neuritic plaques) as well as evident tau pathology (believed to be linked to neurodegeneration) exhibited lower subiculum volume, lower fornix microstructural integrity, and a trend towards lower cognitive score than individuals who showed only reduction in CSF Aß. In contrast, persons with normal levels of tau showed an increase in structural MR markers in relation to declining levels of CSF Aß. These results suggest that hippocampal subfield volume and extra-hippocampal white matter microstructure demonstrate a complex pattern where an initial volume increase is followed by decline among asymptomatic individuals who, in some instances, may be a decade or more away from onset of cognitive or functional impairment.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Hippocampus/diagnostic imaging , Aged , Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoprotein E4/genetics , Biomarkers/cerebrospinal fluid , Female , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/diagnostic imaging , Prodromal Symptoms , White Matter/diagnostic imaging , tau Proteins/cerebrospinal fluid
6.
Hippocampus ; 28(2): 69-75, 2018 02.
Article in English | MEDLINE | ID: mdl-29171926

ABSTRACT

Striking individual differences exist in the human capacity to recollect past events, yet, little is known about the neural correlates of such individual differences. Studies investigating hippocampal volume in relation to individual differences in laboratory measures of episodic memory in young adults suggest that whole hippocampal volume is unrelated (or even negatively associated) with episodic memory. However, anatomical and functional specialization across hippocampal subregions suggests that individual differences in episodic memory may be linked to particular hippocampal subregions, as opposed to whole hippocampal volume. Given that the DG/CA2/3 circuitry is thought to be especially critical for supporting episodic memory in humans, we predicted that the volume of this region would be associated with individual variability in episodic memory. This prediction was supported using high-resolution MRI of the hippocampal subfields and measures of real-world (autobiographical) episodic memory. In addition to the association with DG/CA2/3 , we further observed a relationship between episodic autobiographical memory and subiculum volume, whereas no association was observed with CA1 or with whole hippocampal volume. These findings provide insight into the possible neural substrates that mediate individual differences in real-world episodic remembering in humans.


Subject(s)
Hippocampus/physiology , Memory, Episodic , Adolescent , Female , Follow-Up Studies , Functional Laterality/physiology , Hippocampus/anatomy & histology , Hippocampus/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Individuality , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Young Adult
7.
Hippocampus ; 27(1): 3-11, 2017 01.
Article in English | MEDLINE | ID: mdl-27862600

ABSTRACT

The advent of high-resolution magnetic resonance imaging (MRI) has enabled in vivo research in a variety of populations and diseases on the structure and function of hippocampal subfields and subdivisions of the parahippocampal gyrus. Because of the many extant and highly discrepant segmentation protocols, comparing results across studies is difficult. To overcome this barrier, the Hippocampal Subfields Group was formed as an international collaboration with the aim of developing a harmonized protocol for manual segmentation of hippocampal and parahippocampal subregions on high-resolution MRI. In this commentary we discuss the goals for this protocol and the associated key challenges involved in its development. These include differences among existing anatomical reference materials, striking the right balance between reliability of measurements and anatomical validity, and the development of a versatile protocol that can be adopted for the study of populations varying in age and health. The commentary outlines these key challenges, as well as the proposed solution of each, with concrete examples from our working plan. Finally, with two examples, we illustrate how the harmonized protocol, once completed, is expected to impact the field by producing measurements that are quantitatively comparable across labs and by facilitating the synthesis of findings across different studies. © 2016 Wiley Periodicals, Inc.


Subject(s)
Hippocampus/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Parahippocampal Gyrus/diagnostic imaging , Humans , Pattern Recognition, Automated
8.
Neuroimage ; 111: 526-41, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25596463

ABSTRACT

OBJECTIVE: An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. METHOD: MRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. RESULTS: The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. CONCLUSIONS: The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.


Subject(s)
Clinical Protocols , Hippocampus/anatomy & histology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Parahippocampal Gyrus/anatomy & histology , Adult , Clinical Protocols/standards , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards
9.
J Neurosci ; 33(32): 13088-93, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23926262

ABSTRACT

The KIBRA gene has been associated with episodic memory in several recent reports; carriers of the T-allele show enhanced episodic memory performance relative to noncarriers. Gene expression studies in human and rodent species show high levels of KIBRA in the hippocampus, particularly in the subfields. The goal of the present study was to determine whether the KIBRA C→T polymorphism is also associated with volume differences in the human hippocampus and whether specific subfields are differentially affected by KIBRA genotype. High-resolution magnetic resonance imaging (T2-weighted, voxel size=0.4×0.4 mm, in-plane) was used to manually segment hippocampal cornu ammonis (CA) subfields, dentate gyrus (DG), and the subiculum as well as adjacent medial temporal lobe cortices in healthy carriers and noncarriers of the KIBRA T-allele (rs17070145). Overall, we found that T-carriers had a larger hippocampal volume relative to noncarriers. The structural differences observed were specific to the CA fields and DG regions of the hippocampus, suggesting a potential neural mechanism for the effects of KIBRA on episodic memory performance reported previously.


Subject(s)
Hippocampus/anatomy & histology , Individuality , Intracellular Signaling Peptides and Proteins/genetics , Phosphoproteins/genetics , Polymorphism, Genetic/genetics , Adolescent , Adult , Case-Control Studies , Female , Gene Frequency , Genetic Association Studies , Genotype , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...