Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Type of study
Publication year range
1.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36616080

ABSTRACT

In light of the promising effect of sodium trimetaphosphate nanoparticles (TMPn) on dental enamel, in addition to the scarce evidence of the effects of these nanoparticles on biofilms, this study evaluated the activity of TMPn with/without fluoride (F) on the pH, inorganic composition and extracellular matrix (ECM) components of dual-species biofilms of Streptococcus mutans and Candida albicans. The biofilms were cultivated in artificial saliva in microtiter plates and treated with solutions containing 1% or 3% conventional/microparticulate TMP (TMPm) or TMPn, with or without F. After the last treatment, the protein and carbohydrate content of the ECM was analyzed, and the pH and F, calcium (Ca), phosphorus (P), and TMP concentrations of the biofilms were determined. In another set of experiments, after the last treatment, the biofilms were exposed to a 20% sucrose solution, and their matrix composition, pH, and inorganic component contents were evaluated. 3% TMPn/F significantly reduced ECM carbohydrate and increased biofilm pH (after sucrose exposure) than other treatments. Also, it significantly increased P and F levels before sucrose exposure in comparison to 3% TMPm/F. In conclusion, 3% TMPn/F affected the biofilm ECM and pH, besides influencing inorganic biofilm composition by increasing P and F levels in the biofilm fluid.

2.
Araçatuba; s.n; 2022. 56 p. ilus, graf.
Thesis in Portuguese | LILACS, BBO - Dentistry | ID: biblio-1553308

ABSTRACT

Este estudo avaliou o efeito de nanopartículas de TMP (TMPn) sobre a composição inorgânica e componentes da matriz extracelular de biofilmes mistos de Streptococcus mutans e Candida albicans. Biofilmes de duas espécies de S. mutans e C. albicans foram cultivados em saliva artificial em placas de 6 poços e tratados três vezes (72, 78 e 96 h após o início de sua formação), por 1 minuto, com soluções contendo TMP microparticulado (TMPm) e TMPn nas concentrações de 1% e 3%, combinadas ou não com 1100 ppm F. Além disso, solução de 1100 ppm F (F) e saliva artificial (CTL) foram testadas como controles positivos e negativos, respectivamente. Após o último tratamento, a composição da matriz extracelular foi analisada em termos de proteína e carboidrato, e o pH e as concentrações de F, cálcio (Ca), fósforo (P) e P do TMP da biomassa e fluido do biofilme foram determinadas. Em outro conjunto de experimentos, após o último tratamento, os biofilmes foram expostos a uma solução de sacarose a 20%, e o pH e componentes inorgânicos dos biofilmes foram avaliados conforme mencionado acima. Os dados de proteínas e carboidratos foram submetidos a ANOVA a 1 critério, seguido pelo teste de Student-Newman-Keuls, enquanto os dados da composição inorgânica do biofilme foram submetidos a ANOVA a 2 critérios, seguido pelo teste de Fisher LSD (p< 0,05). Tratamentos com TMPn a 3% combinado com F levou a reduções significativamente maiores nas concentrações de carboidratos da matriz extracelular, maior concentração iônica de F no fluido, e um pH significativamente mais alto, se comparado a todos os outros grupos. Além disso, TMPn a 3% sem F levou a concentrações de P significativamente mais altas em comparação a todos os outros grupos, antes da exposição a sacarose. Conclui-se que o TMPn afetou a composição da matriz extracelular, o pH dos biofilmes analisados, além de interferir nos componentes inorgânicos dos biofilmes ao aumentar os níveis de fósforo no fluido do biofilme(AU)


This study evaluated the effect of TMP nanoparticles (nTMP) on the inorganic composition and extracellular matrix components of mixed biofilms of Streptococcus mutans and Candida albicans. Biofilms of two species of S. mutans and C. albicans were cultivated in artificial saliva in 6-well plates and treated three times (72, 78 and 96 h after the beginning of their formation), for 1 minute, with Solutions containing microparticulate TMP (TMPm) and TMPn at concentrations of 1% and 3%, combined or not with 1100 ppm F. In addition, 1100 ppm F (F) solution and artificial saliva (CTL) were tested as positive and negative controls, respectively. After the last treatment, the composition of the extracellular matrix was analyzed in terms of protein and carbohydrate, and the pH and concentrations of F, calcium (Ca), phosphorus (P) and P of the TMP of the biomass and biofilm fluid were determined. In another set of experiments, after the last treatment, the biofilms were exposed to a 20% sucrose solution, and the pH and inorganic components of the biofilms were evaluated as mentioned above. Protein and carbohydrate data were subjected to 1-way ANOVA, followed by the Student-Newman-Keuls test, while biofilm inorganic composition data were subjected to 2-way ANOVA, followed by the Fisher LSD test (p< 0 .05). Treatments with 3% nTMP combined with F led to significantly greater reductions in extracellular matrix carbohydrate concentrations, and significantly higher pH, compared to all other groups. In addition, 3% nTMP without F led to significantly higher P concentrations compared to all other groups before sucrose exposure. It is concluded that TMPn affected the composition of the extracellular matrix, the pH of the analyzed biofilms, in addition to interfering with the inorganic components of the biofilms by increasing phosphorus levels in the biofilm fluid(AU)


Subject(s)
Phosphates , Nanoparticles , Fluorides , Phosphorus
3.
Caries Res ; 54(4): 358-368, 2020.
Article in English | MEDLINE | ID: mdl-32998137

ABSTRACT

The aim of the present study was to evaluate the influence of sodium trimetaphosphate (TMP), associated or not with fluoride (F), on the concentrations of F, calcium (Ca), and phosphorus (P) and on the pH of mixed biofilms of Streptococcus mutans and Candida albicans, before and after exposure to sucrose. The biofilms received three treatments (72, 78, and 96 h after the beginning of their formation), at three TMP concentrations (0.25, 0.5, or 1%), with or without F at 500 ppm. Solutions containing 500 and 1,100 ppm F as well as artificial saliva were also tested as controls. Biofilm pH was measured and the concentrations of F, Ca, and P were determined (solid and fluid phases). In a parallel experiment, after the third treatment (96 h), the biofilms were exposed to a 20% sucrose solution to simulate a cariogenic challenge and the pH of the medium, F, Ca, P, and TMP were determined. The data were submitted by two-way ANOVA, followed by Fisher's least significant difference test (p < 0.05). Treatment with TMP and 500 ppm F led to higher F concentration in the biofilm fluid. Although TMP did not affect Ca concentrations, biofilms treated with TMP alone presented higher P concentrations. Treatment with 1% TMP and F led to the highest pH values of the biofilm, both before and after the cariogenic challenge. It was concluded that TMP increases F and P in the biofilm and that its presence promotes an increase in the pH of the medium, even after the cariogenic challenge.


Subject(s)
Fluorides , Sucrose , Biofilms , Fluorides/pharmacology , Humans , Hydrogen-Ion Concentration , Polyphosphates , Sodium Fluoride/pharmacology , Streptococcus mutans , Sucrose/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL