Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667189

ABSTRACT

L-Lactate is an important bioanalyte in the food industry, biotechnology, and human healthcare. In this work, we report the development of a new L-lactate electrochemical biosensor based on the use of multiwalled carbon nanotubes non-covalently functionalized with avidin (MWCNT-Av) deposited at glassy carbon electrodes (GCEs) as anchoring sites for the bioaffinity-based immobilization of a new recombinant biotinylated lactate oxidase (bLOx) produced in Escherichia coli through in vivo biotinylation. The specific binding of MWCNT-Av to bLOx was characterized by amperometry, surface plasmon resonance (SPR), and electrochemical impedance spectroscopy (EIS). The amperometric detection of L-lactate was performed at -0.100 V, with a linear range between 100 and 700 µM, a detection limit of 33 µM, and a quantification limit of 100 µM. The proposed biosensor (GCE/MWCNT-Av/bLOx) showed a reproducibility of 6.0% and it was successfully used for determining L-lactate in food and enriched serum samples.


Subject(s)
Avidin , Biosensing Techniques , Lactic Acid , Mixed Function Oxygenases , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Mixed Function Oxygenases/chemistry , Avidin/chemistry , Electrochemical Techniques , Surface Plasmon Resonance , Enzymes, Immobilized/chemistry , Escherichia coli , Biotinylation , Electrodes , Dielectric Spectroscopy , Limit of Detection
2.
J Biotechnol ; 363: 1-7, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36608873

ABSTRACT

L-lactate oxidase (LOX) is a biotechnologically important enzyme used in biosensors and colorimetric kits to detect lactate, a key biomarker in clinical diagnostics, sports medicine and the food industry. In this work, we produced a recombinant His-tagged Aerococcus viridans LOX (rLOX) in Escherichia coli and carried out its functional characterization for industrial applications. Our rLOX was evaluated in a colorimetric kit for human diagnostics and in an amperometric biosensor to measure the lactic acid in food products. The rLOX was fully functional for both applications, with a performance comparable to commercial untagged LOXs. As the industrial use of LOX enzyme requires a large-scale production, we scaled up the rLOX production in a fed-batch bioreactor culture and obtained a yield approximately ten times higher than that of the Erlenmeyer scale. The His-tag allowed an easy and highly efficient purification process, and a high-purity rLOX was recovered after this one-step affinity purification. In this study, we described a simple, rapid and cost-competitive approach for the production of a recombinant His-tagged LOX enzyme suitable for industrial use.


Subject(s)
Bioreactors , Mixed Function Oxygenases , Batch Cell Culture Techniques , Fermentation , Lactic Acid , Mixed Function Oxygenases/genetics
3.
Int J Vet Sci Med ; 11(1): 126-137, 2023.
Article in English | MEDLINE | ID: mdl-38173987

ABSTRACT

Fasciolosis is a parasitic disease considered as emerging and neglected by the WHO. Sheep are highly susceptible to this disease, and affected flocks experience decreased productivity due to increased mortality, and the reduced quality of their products, such as wool and meat. To effectively control this disease, reliable and early diagnosis is essential for making decisions regarding antiparasitic application and/or the removal of affected animals. Currently, the diagnosis of F. hepatica in sheep relies on the detection of parasite eggs in faeces, a method that becomes reliable from week 10 post-infection. Consequently, there is a need for earlier diagnostic tools based on immune response. However, obtaining antigens for antibody detection has proven to be difficult and expensive. The aim of this study was to evaluate members of the Kunitz protein family of F. hepatica expressed in the form of a fusion protein in the serological diagnosis of F. hepatica in sheep. The performance of three recombinant F. hepatica Kunitz-type inhibitors (FhKT1.1, FhKT1.3, and FhKT4) was compared with a synthetic Kunitz-type peptide (sFhKT) in sera from sheep experimentally infected with F. hepatica, using an ELISA. Of these, FhKT1.1 showed the most promising diagnostic indicators, exhibiting high precision and low cross-reactivity, and thus potential for standardized production. The results of our study demonstrated that the application of FhKT1.1 is a valuable tool for early-stage diagnosis of F. hepatica in sheep. Such an early diagnosis can aid in implementing timely interventions and effectively managing the disease in sheep populations.

4.
Int J Mol Sci ; 22(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204583

ABSTRACT

Fabry disease (FD) is a lysosomal storage disease caused by mutations in the gene for the α-galactosidase A (GLA) enzyme. The absence of the enzyme or its activity results in the accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), in different tissues, leading to a wide range of clinical manifestations. More than 1000 natural variants have been described in the GLA gene, most of them affecting proper protein folding and enzymatic activity. Currently, FD is treated by enzyme replacement therapy (ERT) or pharmacological chaperone therapy (PCT). However, as both approaches show specific drawbacks, new strategies (such as new forms of ERT, organ/cell transplant, substrate reduction therapy, or gene therapy) are under extensive study. In this review, we summarize GLA mutants described so far and discuss their putative application for the development of novel drugs for the treatment of FD. Unfavorable mutants with lower activities and stabilities than wild-type enzymes could serve as tools for the development of new pharmacological chaperones. On the other hand, GLA mutants showing improved enzymatic activity have been identified and produced in vitro. Such mutants could overcome several complications associated with current ERT, as lower-dose infusions of these mutants could achieve a therapeutic effect equivalent to that of the wild-type enzyme.


Subject(s)
Fabry Disease/genetics , Genetic Predisposition to Disease , Mutation , alpha-Galactosidase/genetics , Alleles , Animals , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Disease Management , Enzyme Activation , Fabry Disease/diagnosis , Fabry Disease/metabolism , Fabry Disease/therapy , Humans , Structure-Activity Relationship , Treatment Outcome , alpha-Galactosidase/chemistry , alpha-Galactosidase/metabolism
5.
J Biotechnol ; 332: 126-134, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33878389

ABSTRACT

We evaluated several intein-based self-cleaving affinity tags for expression and single-step affinity chromatography purification of recombinant proteins produced in Escherichia coli. We used human growth hormone (hGH) as target protein that contains two internal disulfide bridges and an N-terminal phenylalanine. Use of N-terminal thiol-induced Sce VMA1 intein affinity tag resulted in purified hGH deficient in disulfide bonds. Inteins with self-cleavage inducible by pH and/or temperature shift were analyzed. N-terminal Ssp DnaX intein affinity tag resulted in a completely cleaved cytosolic protein, whereas N-terminal Ssp DnaB intein affinity tag resulted in a cytosolic fusion protein incapable of releasing hGH. Periplasmic expression of target protein was analyzed using an N-terminal signal peptide and C-terminal Ssp DnaX pH-inducible self-cleaving affinity tag. The fusion protein was properly expressed in pH 8 buffered culture medium. Fusion of a periplasmic signal peptide to the N-terminus of the POI allowed secretion to the periplasmic region and presence of the natural N-terminal amino acid of the POI following cleavage. Periplasmic expression of hGH fused to this novel C-terminal DnaX intein-based self-cleaving affinity tag made possible expression and purification of hGH protein containing disulfide bonds and free of extra amino acids.


Subject(s)
Escherichia coli , Inteins , Chromatography, Affinity , Escherichia coli/genetics , Humans , Inteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...