Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biomimetics (Basel) ; 9(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38534820

ABSTRACT

Atherosclerosis represents the etiologic source of several cardiovascular events, including myocardial infarction, cerebrovascular accidents, and peripheral artery disease, which remain the leading cause of mortality in the world. Numerous strategies are being delineated to revert the non-optimal projections of the World Health Organization, by both designing new diagnostic and therapeutic approaches or improving the interventional procedures performed by physicians. Deeply understanding the pathological process of atherosclerosis is, therefore, mandatory to accomplish improved results in these trials. Due to their availability, reproducibility, low expensiveness, and rapid production, biomimicking physical models are preferred over animal experimentation because they can overcome some limitations, mainly related to replicability and ethical issues. Their capability to represent any atherosclerotic stage and/or plaque type makes them valuable tools to investigate hemodynamical, pharmacodynamical, and biomechanical behaviors, as well as to optimize imaging systems and, thus, obtain meaningful prospects to improve the efficacy and effectiveness of treatment on a patient-specific basis. However, the broadness of possible applications in which these biomodels can be used is associated with a wide range of tissue-mimicking materials that are selected depending on the final purpose of the model and, consequently, prioritizing some materials' properties over others. This review aims to summarize the progress in fabricating biomimicking atherosclerotic models, mainly focusing on using materials according to the intended application.

2.
3D Print Addit Manuf ; 11(1): 333-346, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38389681

ABSTRACT

Stroke is a significant public health problem, with non-valvular atrial fibrillation (NVAF) being one of its main causes. This cardiovascular arrhythmia predisposes to the production of intracardiac thrombi, mostly formed in the left atrial appendage (LAA). When there are contraindications to treatment with oral anticoagulants, another therapeutic option to reduce the possibility of thrombus formation in the LAA is the implantation of an occlusion device by cardiac catheterization. The effectiveness of LAA occlusion is dependent on accurate preprocedural device sizing and proper device positioning at the LAA ostium, to ensure sufficient device anchoring and avoid peri-device leaks. Additive manufacturing, commonly known as three-dimensional printing (3DP), of LAA models is beginning to emerge in the scientific literature to address these challenges through procedural simulation. This review aims at clarifying the impact of 3DP on preprocedural planning of LAA occlusion, specifically in the training of cardiac surgeons and in the assessment of the perfect adjustment between the LAA and the biomedical implant.

3.
Polymers (Basel) ; 15(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36771780

ABSTRACT

Atherosclerosis is one of the leading causes of death worldwide. Although this subject arouses much interest, there are limitations associated with the biomechanical investigation done in atherosclerotic tissues, namely the unstandardized tests for the mechanical characterization of these tissues and the inherent non-consensual results obtained. The variability of tests and typologies of samples hampers direct comparisons between results and hinders the complete understanding of the pathologic process involved in atherosclerosis development and progression. Therefore, a consensual and definitive evaluation of the mechanical properties of healthy and atherosclerotic blood vessels would allow the production of physical biomodels that could be used for surgeons' training and personalized surgical planning. Additive manufacturing (AM), commonly known as 3D printing, has attracted significant attention due to the potential to fabricate biomodels rapidly. However, the existing literature regarding 3D-printed atherosclerotic vascular models is still very limited. Consequently, this review intends to present the atherosclerosis disease and the consequences of this pathology, discuss the mechanical characterization of atherosclerotic vessels/plaques, and introduce AM as a potential strategy to increase the understanding of atherosclerosis treatment and pathophysiology.

4.
Materials (Basel) ; 15(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36363231

ABSTRACT

The objective of the current study was to butt-weld 6 mm-thick polyethylene (PE) plates by friction stir welding (FSW) using a non-conventional stationary shoulder tool. The welds were performed with an unheated shoulder and with a shoulder temperature of 85 °C. Additionally, rotational speeds of 870, 1140 and 1500 rpm; welding speeds of 60 and 120 mm/min; and plunge depths of 5.5 and 5.7 mm were used. The influence of these parameters on morphology, hardness, ultimate tensile strength, elongation at break and fracture modes was evaluated. Shoulder heating proved to be crucial for the optimization of PE joints by FSW, as it clearly improved joint efficiency. Furthermore, shoulder heating promoted the reduction in internal and external defects, such as porosity and surface burning. Defect-free weld seams were obtained with higher rotational speeds and a lower welding speed. A maximum joint efficiency of about 97% was achieved with a shoulder temperature of 85 °C, a rotational speed of 1500 rpm, a welding speed of 60 mm/min and a plunge depth of 5.7 mm. A weld with the average joint efficiency of 92% was produced at 120 mm/min, which based on the literature found is the highest welding speed reported that achieved a joint efficiency above 90%.

5.
Polymers (Basel) ; 14(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36235905

ABSTRACT

Fiber-reinforced polymer composites are frequently used in marine environments which may limit their durability. The development of accurate engineering tools capable of simulating the effect of seawater on material strength can improve design and reduce structural costs. This paper presents a numerical-based approach to predict the stress-strain response of fiber-reinforced polymer composites exposed to different seawater immersion times, ranging from 0 to 900 days. A three-dimensional numerical model has been implemented using a static implicit finite element analysis along with a user-defined material (UMAT) subroutine. Puck's failure criterion was used for ultimate failure analysis of the laminates, while Fick's first diffusion law was used to predict the seawater absorption rate. Overall, the simulated stress-strain curves were close to those obtained experimentally. Moreover, the model agreed well with the experimental data regarding the maximum stress and the strain at failure leading to maximum errors lower than 9% and 11%, respectively. Additionally, the simulated strain fields agreed well with the experimental results measured by digital image correlation. Finally, the proposed procedure was also used to identify the most critical surfaces to protect the mechanical components from marine environments.

6.
Polymers (Basel) ; 14(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35335430

ABSTRACT

One of the leading causes of death is cardiovascular disease, and the most common cardiovascular disease is coronary artery disease. Percutaneous coronary intervention and vascular stents have emerged as a solution to treat coronary artery disease. Nowadays, several types of vascular stents share the same purpose: to reduce the percentage of restenosis, thrombosis, and neointimal hyperplasia and supply mechanical support to the blood vessels. Despite the numerous efforts to create an ideal stent, there is no coronary stent that simultaneously presents the appropriate cellular compatibility and mechanical properties to avoid stent collapse and failure. One of the emerging approaches to solve these problems is improving the mechanical performance of polymeric bioresorbable stents produced through additive manufacturing. Although there have been numerous studies in this field, normalized control parameters for 3D-printed polymeric vascular stents fabrication are absent. The present paper aims to present an overview of the current types of stents and the main polymeric materials used to fabricate the bioresorbable vascular stents. Furthermore, a detailed description of the printing parameters' influence on the mechanical performance and degradation profile of polymeric bioresorbable stents is presented.

7.
Polymers (Basel) ; 13(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201742

ABSTRACT

The objective of current work is to analyse the influence of different welding techniques and welding parameters on the morphology and mechanical strength of friction stir welds (FSW) in polymers, based on data collected in the literature. In the current work, only articles that provide data on the joint efficiency, or sufficient information to estimate it are considered. The process using conventional tool is presented and compared with new procedures developed for FSW of polymers, such as those using tools with heated stationary shoulder, preheating of the polymer or double-side passage of the tool. The influence of tool rotational speed (w), welding speed (v), tilt angle and geometry of the pin are discussed. This work focuses on the polymers most studied in the literature, polyethylene (PE) and polypropylene (PP). The use of external heating and tools with stationary shoulder proved to be of great importance in improving the surface finish, reducing defects, and increasing the mechanical strength of the welds. The increase in the w/v ratio increased the joint efficiency, especially when using conventional tools on PE. A trend was obtained for conventional FSW, but it was difficult to establish mathematical relationships, because of the variability of welding conditions.

8.
Waste Manag ; 118: 426-434, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32966947

ABSTRACT

This study concerns the evaluation of several properties/characteristics of 3D printed poly(lactic acid) (PLA) polymer and acrylonitrile-butadienestyrene (ABS) copolymer, recycled from food packages and car dashboards, respectively. The aim is to evaluate the potential of recycled polymers that are recovered from solid polymer waste (SPW) to be reused for functional components/parts for add-value applications. The study compared the performance of the recycled material with the obtained from the 3D printing of virgin polymer. The characterization was made considering the chemical, thermal and mechanical properties as well as surface roughness and wettability. Although the thermal characterization did not indicate significant variations between recycled and virgin material, the mechanical recycling process induced some chain scission in PLA. Consequently, the semi-crystalline polymer revealed losses of 33% both in tensile stress and flexural strength. On the contrary, recycled ABS did not show changes in the mechanical properties of the printed specimens. Both recycled polymers produced smoother surfaces with a decrease of the mean surface roughness between 55% and 65%. Considering the properties required by manufacturers of food containers and car dashboards, this study indicates that recycled materials can be reused for the same applications.


Subject(s)
Acrylonitrile , Polymers , Food Packaging , Printing, Three-Dimensional , Recycling
9.
J Oral Sci ; 62(4): 415-419, 2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32879157

ABSTRACT

This study sought to evaluate biofilm elimination using the HBW Ultrasonic Ring based on continuous ultrasonic irrigation. Forty-five premolars and molars with complex curvatures were included. An Enterococcus faecalis biofilm was established for 30 days on the extracted teeth. The teeth were then stratified into three experimental groups for instrumentation and irrigation (i.e. HBW Ultrasonic Ring, conventional irrigation, and passive ultrasonic irrigation). Pre- and post-instrumentation samples were collected, and reductions of bacterial load were evaluated by McFarland's scale, counting of colony-forming units, and scanning electronic microscopy. The HBW Ultrasonic Ring promoted a higher reduction in bacterial load relative to conventional irrigation (P < 0.05) and a similar reduction compared with passive ultrasonic irrigation (P > 0.05). These results suggest the HBW Ultrasonic Ring is a promising alternative modality for simultaneous instrumentation and irrigation during root canal treatment, achieving an appropriate level of bacterial reduction and allowing the passage of the irrigating solution throughout the entire working length.


Subject(s)
Enterococcus faecalis , Root Canal Irrigants , Biofilms , Dental Pulp Cavity , Root Canal Preparation , Sodium Hypochlorite , Therapeutic Irrigation , Ultrasonics
10.
Article in English | MEDLINE | ID: mdl-31847390

ABSTRACT

During recent years the number of tennis athletes has increased significantly. When playing tennis, the human body is exposed to many situations which can lead to human injuries, such as the so-called tennis elbow (lateral epicondylitis). In this work a biomechanical analysis of tennis athletes, particularly during the service, was performed, considering three different types of over-grip and the presence of one anti-vibrator device. One part of the study evaluates the exposure to hand-arm vibration of the athlete, based on the European Directive 2002/44/EC concerning the minimum health and safety requirements, regarding the exposure of workers to risks from physical agents. The second part of the study considers an infrared thermography analysis in order to identify signs of risk of injury, particularly tennis elbow, one of the most common injuries in this sport. The results show that the presence of the anti-vibrator influences the vibration values greatly in the case of athletes with more experience and also for athletes with less performance. The presence of the Cork and/or Tourna on the racket grip does not have any significant effect on the hand-arm vibration (HAV), similarly in the case of athletes with the best performance and athletes with less technique. The results indicated that the infrared thermography technique may be used to identify the risk of injuries in tennis players.


Subject(s)
Arm/physiology , Hand/physiology , Skin Temperature , Tennis/physiology , Athletes , Hand Strength , Healthy Volunteers , Humans , Male , Skin , Tennis/injuries , Tennis Elbow/etiology , Thermography , Vibration , Young Adult
11.
Materials (Basel) ; 12(9)2019 May 01.
Article in English | MEDLINE | ID: mdl-31052456

ABSTRACT

Samples having nominal compositions of AlSi12 and Al6082-T4 were prepared using a lost wax casting process, with nominal relative densities of 20%, 40%, and 60%, as well as arrangements of a uniform cell structure (US) or a dual-size cell (DS). For comparison, samples of aluminium foam-filled tubes having the same nominal composition were also prepared with the same technique, with nominal relative densities of 20% and similar arrangements (US and DS). Impact tests at different velocities were performed using a split Hopkinson pressure bar (SHPB). It is possible to conclude that Al6082-T4 foams have better performance, in both configurations, than the AlSi12 ones. Considering a uniform cell structure and a density of 20%, the absorbed energy by the Al6082-T4 foams was around 25% higher than the value observed for the AlSi12 ones. In terms of arrangement, the US structure presents absorbed energy around 57% lower than the DS ones, while the AlSi12 foams with a relative density of 20% were compared. Finally, the absorbed energy growths from 2.8 × 105 to 5.2 × 105 J/m3, when the density increased from 20% to 60%. However, when these foams were involved with a tube, the performances increased substantially.

12.
Med Eng Phys ; 46: 96-109, 2017 08.
Article in English | MEDLINE | ID: mdl-28645848

ABSTRACT

The primary aim of this work was to validate the "numerical" cortex material properties (transversely isotropic) of synthetic femurs and to evaluate how the strain level of the cancellous bone can be affected by the FE modeling of the material's behavior. Sensitivity analysis was performed to find out if the parameters of the cortex material affect global strain results more than the Polyurethane (PU) foam used to simulate cancellous bone. Standard 4th generation composite femurs were made with 0.32g/cm3 solid PU foam to model healthy cancellous bone, while 0.2g/cm3 cellular PU was used to model unhealthy cancellous bone. Longitudinal and transversal Young's moduli of cortical bone were defined according the manufacturer data, while shear modulus and Poisson's ratios were defined from the literature. All femurs were instrumented with rosette strain gauges and loaded according to ISO7206 standards, simulating a one-legged stance. The experimental results were then compared with those from finite element analysis. When cortical bone was modelled as transversely isotropic, an overall FE/experimental error of 11% was obtained. However, with isotropic material the error rose to 20%. Strain field distributions predicted inside the two bone models were similar, but the strain state of a healthy cancellous bone was much more a compression state than that of unhealthy bone, the compression state decreased about 90%. Strain magnitudes show that average strain-levels of cancellous bone can be significantly affected by the properties of the cortical bone material and, therefore, simulations of femur-implanted systems must account for the composite behavior of the cortex, since small shear strains would develop near isotropic cancellous bone-implant interfaces. Moreover, the authors suggest that changing the volume fraction of glass fibers used to manufacture the cortical bone would allow a more realistic osteoporotic synthetic femurs to be produced.


Subject(s)
Biomimetic Materials , Femur , Finite Element Analysis , Materials Testing , Stress, Mechanical
13.
J Clin Pediatr Dent ; 34(4): 329-33, 2010.
Article in English | MEDLINE | ID: mdl-20831135

ABSTRACT

The objective of this study was to identify cultivable microorganisms from primary teeth with necrotic pulps. This experimental study included 21 patients of both sexes between 4 and 7 years of age with necrotic pulps in primary teeth. Twenty-one maxillary and mandibular molars containing at least 1 necrotic canal, an abscess or sinus tract, one or more radiolucent areas in the furcation or periapical region, teeth having at least two thirds of root length, and carious lesions directly exposed to the oral environment were included. After antisepsis of the oral cavity, anesthesia of the affected tooth, and isolation and disinfection of the operative field, 3 sterile absorbent paper points were sequentially placed for 30 seconds for the collection of samples. The samples were immediately processed in an anaerobic chamber, and all isolated microorganisms were identified. Anaerobic species (anaerobic facultative and moderate anaerobes) were isolated in all root canals; 68.4% of root canal samples studied showed a polymicrobial nature. Most of the isolate consisted of Bifidobacterium Spp2 and Streptococcus intermedius. Other less frequently encountered species were Actinomyces israelii, Bifidobacterium spp 1, Clostridium spp, and Candida albicans. Results indicate the existence of combinations of bacterial species in root canal infections of the primary dentition with necrotic pulps, anaerobic bacteria predominating.


Subject(s)
Bacteria, Anaerobic/classification , Dental Pulp Necrosis/microbiology , Dental Pulp/microbiology , Tooth, Deciduous/microbiology , Abscess/microbiology , Actinomyces/classification , Actinomycosis/microbiology , Bifidobacteriales Infections/microbiology , Bifidobacterium/classification , Candida albicans/isolation & purification , Candidiasis, Oral/microbiology , Child , Child, Preschool , Clostridium/classification , Clostridium Infections/microbiology , Dental Caries/microbiology , Dental Pulp Cavity/microbiology , Female , Humans , Male , Oral Fistula/microbiology , Periapical Diseases/microbiology , Streptococcal Infections/microbiology , Streptococcus intermedius/isolation & purification , Tooth Root/microbiology
14.
J Eukaryot Microbiol ; 52(3): 191-200, 2005.
Article in English | MEDLINE | ID: mdl-15926994

ABSTRACT

The toxic dinoflagellate Alexandrium catenella isolated from fjords in Southern Chile produces several analogues of saxitoxin and has been associated with outbreaks of paralytic shellfish poisoning. Three bacterial strains, which remained in close association with this dinoflagellate in culture, were isolated by inoculating the dinoflagellate onto marine agar. The phenotypically different cultivable bacterial colonies were purified. Their genetic identification was done by polymerase chain reaction amplification of the 16S rRNA genes. Partial sequence analysis suggested that the most probable affiliations were to two bacterial phyla: Proteobacteria and the Cytophaga group. The molecular identification was complemented by morphological data and biochemical profiling. The three bacterial species, when grown separately from phytoplankton cells in high-nutrient media, released algal-lytic compounds together with aminopeptidase, lipase, glucosaminidase, and alkaline phosphatase. When the same bacteria, free of organic nutrients, were added back to the algal culture they displayed no detrimental effects on the dinoflagellate cells and recovered their symbiotic characteristics. This observation is consistent with phylogenetic analysis that reveals that these bacteria correspond to species distinct from other bacterial strains previously classified as algicidal bacteria. Thus, bacterial-derived lytic activities are expressed only in the presence of high-nutrient culture media and it is likely that in situ environmental conditions may modulate their expression.


Subject(s)
Bacteria/classification , Dinoflagellida/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/ultrastructure , Bacterial Typing Techniques , Cytophaga/classification , Cytophaga/genetics , Cytophaga/isolation & purification , Cytotoxins/analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Dinoflagellida/ultrastructure , Enzymes/analysis , Eukaryota/microbiology , Molecular Sequence Data , Phylogeny , Pseudoalteromonas/classification , Pseudoalteromonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification , Seawater/microbiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...