Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(9): e19343, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662829

ABSTRACT

Cochlear implants (CIs) allow individuals with profound hearing loss to understand speech and perceive sounds. However, not all patients obtain the full benefits that CIs can provide and the cause of this disparity is not fully understood. One possible factor for the variability in outcomes after cochlear implantation, is the development of fibrotic scar tissue around the implanted electrode. It has been hypothesised that limiting the extent of fibrosis after implantation may improve overall CI function, and longevity of the device. Currently, histology is often used to quantify the extent of intracochlear tissue growth after implantation however this method is labour intensive, time-consuming, often involves significant user bias, and causes physical distortion of the fibrosis. Therefore, this study aimed to evaluate x-ray micro computed tomography (µCT) as a method to measure the amount and distribution of fibrosis in a guinea pig model of cochlear implantation. Adult guinea pigs were implanted with an inactive electrode, and cochleae harvested eight weeks later (n = 7) and analysed using µCT, to quantify the extent of tissue reaction, followed by histological analysis to confirm that the tissue was indeed fibrotic. Cochleae harvested from an additional six animals following implantation were analysed by µCT, before and after contrast staining with osmium tetroxide (OsO4), to enhance the visualisation of soft tissues within the cochlea, including the tissue reaction. Independent analysis by two observers showed that the quantification method was robust and provided additional information on the distribution of the response within the cochlea. Histological analysis revealed that µCT visualised dense collagenous material and new bone formation but did not capture loose, areolar fibrotic tissue. Treatment with OsO4 significantly enhanced the visible tissue reaction detected using µCT. Overall, µCT is an alternative and reliable method that can be used to quantify the extent of the CI-induced intracochlear tissue response and will be a useful tool for the in vivo assessment of novel anti-fibrotic treatments.

2.
Brain Sci ; 12(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36009159

ABSTRACT

The auditory phantom sensation of tinnitus is associated with neural hyperactivity. Modulating this hyperactivity using repetitive transcranial magnetic stimulation (rTMS) has shown beneficial effects in human studies. Previously, we investigated rTMS in a tinnitus animal model and showed that rTMS over prefrontal cortex (PFC) attenuated tinnitus soon after treatment, likely via indirect effects on auditory pathways. Here, we explored the duration of these beneficial effects. Acoustic trauma was used to induce hearing loss and tinnitus in guinea pigs. Once tinnitus developed, high-frequency (20 Hz), high-intensity rTMS was applied over PFC for two weeks (weekdays only; 10 min/day). Behavioral signs of tinnitus were monitored for 6 weeks after treatment ended. Tinnitus developed in 77% of animals between 13 and 60 days post-trauma. rTMS treatment significantly reduced the signs of tinnitus at 1 week on a group level, but individual responses varied greatly at week 2 until week 6. Three (33%) of the animals showed the attenuation of tinnitus for the full 6 weeks, 45% for 1-4 weeks and 22% were non-responders. This study provides further support for the efficacy of high-frequency repetitive stimulation over the PFC as a therapeutic tool for tinnitus, but also highlights individual variation observed in human studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...